Path integral for coherent states of the dynamical group SU(1,1)
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Path integrals over coherent states of the dynamical group (noninvariance group) SU(1,1) are
constructed. From the continuous limit the relevant classical dynamics is extracted and is shown
to take place in a curved phase space of the form of a Lobachevskii plane. Applications are made to
the harmonic oscillator, a model of superfluid helium, the Morse oscillator, and the hydrogen
atom. It is shown that when SU(1,1} is the relevant dynamical group the motion will appear

oscillator-like on the Lobachevskii plane.

PACS numbers: 02.20. + b, 02.30. + g, 03.65.Fd

I. INTRODUCTION

Coherent states were originally constructed to follow
the classical motion of a one dimensional harmonic oscilla-
tor." These states, { |z) }, can be constructed in three ways: (i)
as states which minimize the uncertainty relation 4x4p
>#/2, (i) as states which diagonalize the boson annihilation
operator 4, i.e., @|z) = z|z), and (iii) from the application of
the displacement operator D (z) = e*" ~***(an element of the
Heisenberg-Weyl group) on the ground state |0)

|z) = D (z)|0).

As it happens, all three definitions turn out to be equivalent,
yielding states which do follow the classical motion of the
oscillator.

The notion of generalized coherent states arises in con-
nection with the attempt to construct quasi-classical states
for dynamical systems other than the oscillator. Consider-
able effort by Nieto and collaborators? has gone into the
construction of analytic coherent states for generalized po-
tentials. In their work, the approach is to take the canonical
variables (x,p) of the classical problem and find a map to a set
of variables (X,P) which makes the Hamiltonian Jook like a
harmonic oscillator. The quantum analoges of the variables
are then used to construct a generalized uncertainty relation,
the generalized coherent states being those states which
minimize this relation.

An alternate method of creating generalized coherent
states is associated with irreducible representations of Lie
groups. Spin coherent states based on SU(2) have been dis-
cussed by Radcliffe and others® while Perelomov* has given
a general method for constructing coherent states for an ar-
bitrary Lie group. This involves defining a unitary operator
with elements of the Lie algebra in analogy to the displace-
ment operator for the Heisenberg—Weyl group, and letting
this operator act on some conveniently chosen vector out of
the irreducible representation. Such systems of generalized
coherent states might be expected to be relevant for a system
that has an associated dynamical group. By this we mean a
group whose Lie algebra is a spectrum generating algebra
(SGA). That is, the energy eigenvalue problem can be written
in terms of the group generators and the irreducible repre-
sentations yield the spectrum. For instance, it is well known
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that the group SU(1,1)~S0O(2,1} is an SGA for such systems
as the harmonic oscillator, the hydrogen atom, the Morse
potential,® and some many-body problems.®

Functional integrals in the ordinary coherent state re-
presentation are well known to be useful for many-body sys-
tems of bosons.” Recently path integrals in the SU(2) coher-
ent state representations have been discussed.® This type of
functional integral yields a corresponding classical dyna-
mics whose phase space is curved, in fact, the two-dimen-
sional sphere S 2. Starting from the quantum mechanical Ha-
miltonian of the rigid rotator the corresponding canonical
equations of motion reproduce the Euler equations for a rig-
id body.

In this paper we propose to construct the path integral
in the SU(1,1) coherent state [SU(1,1)CS] representation. In
doing so we are first faced with a choice of two nonequivalent
definitions of SU{1,1)JCS. There is, of course, the definition of
Perelomov already alluded to, but there is also a definition
given by Barut and Girardello.® However, for these latter
states, technical difficulties, such as the fact that the overlap
of two states and matrix elements of operators cannot be
expressed as closed forms, prohibits us from readily forming
a useful path integral. We thus use the Perelomov definition.

The actual construction of the propagator for
SU(1,1)CS closely follows that for SU(2)CS.? There are some
differences, however. In general the physical states of the
system are not identical to the basis vectors of the group
representation. They are related though by rotation about an
axis in the abstract space of the group. For systems where
this transformation is unitary, appropriate physical coher-
ent states are defined and the propagator is given in terms of
these states. The model of superfluid helium II discussed in
Sec. IV is an example of this. When the transformation is not
unitary, as for the hydrogen atom (Sec. V B), we deal with a
functional integral expression of a resolvent whose poles give
the bound state energies. We obtain a propagator for the
coherent group states whose path integral expression con-
tains not the usual Hamiltonian but an auxiliary zero-energy
““Hamiltonian”. We show that the classical mechanics of the
SU(1,1)CS path integral is again a curved phase space, this
time a Lobachevskii plane. For systems where the Hamilton-
ian (or an auxiliary one) is linear in SU(1,1) generators, the
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corresponding classical motion will look oscillator-like on
the Lobachevskii plane.

The plan of the paper is as follows: In Sec. II we briefly
review SU(1,1) and the relevant irreducible representations.
Perelomov’s definition of SU{1,1)CS is presented and various
matrix elements of SU(1,1) generators are given. We can im-
mediately use the SU(1,1)CS to determine the propagator for
a one-dimensional harmonic oscillator (whose physical
states are composed of two irreducible representations of
SU(1,1)). We follow through the calculation of the partition
function to demonstrate that the total propagator must in-
clude the parts from all representations needed to cover the
physical states. [The sum occurs since SU(1,1) is not a sym-
metry group in contrast to SU(2)']. In Sec. III we derive a
path integral expression of the propagator in SU(1,1)CS and
derive the relevant classical limit. In Sec. IV we apply the
formalism to a superfluid in the Bogoliubov approximation,
where SU(1,1) has been shown to be the relevant dynamical
group. In Sec. V applications are made to the Morse oscilla-
tor and the hydrogen atom. A brief discussion concludes the

paper.
Il. SU(1,1) LIE ALGEBRA AND DEFINITION OF
COHERENT STATES

The Lie algebra of SU(1,1) consists of three generations
K|, K,, and K, which satisfy the commutation relations

[K,,K,] = —iK,, (2.1a)
[X,.K,] =iK,, (2.1b)
[KpK,] =iK,. (2.1¢)
Defining the raising and lowering operators
K, =K, +iK,,
the above algebra becomes
[KoK.]= +K_, (2.2a)
[K_,K.,]=2K,. (2.2b)

The Casimir operator is

C,=K} K} —K} =K} —y(K,K_+K_K,).
(2.3)

By Schur’s lemma we have
C,=k(k— 1), (2.4)

where 7 is the identity operator. There are four distinct types
of unitary irreducible representations, as has been discussed
by Barut and Fronsdal.'' We are primarily interested in the
representation known as & * (k ), the positive discrete series.
We denote the basis vectors as |k,n). For the series & *(k ),
K, (the generator of a compact subgroup) is diagonal such
that

Kolk,n) = (k + n)|k,n), (2.5)
where n =0,1,2,.... and k> 0.

A realization of the SU(1,1) algebra can be given in
terms of the creation and annihilation operators 4 *,4 satis-
fying the canonical algebra [4,4%] = 1.

We have
K, =4§a")y
K_ = %(a)z’
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K,=4Maa" +a*a). (2.6)
Using this realization and the eigenstate of the harmonic
oscillator, C, becomes

Co= —al
so that k = 1/4,3/4. Using the commutation relations for &
and @™ it is easy to see that we can write Eq. (2.6c) as

K,=14@a*a+1). (2.7)
Then the Hamiltonian for the 1 — d harmonic oscillator can
be written as

H = 2%k, (2.8)
Note that the two representations of SU(1,1) (for k = } and 3)

are needed to cover all the states of the oscillator. For k = ]

we obtain the energy levels Vi, 3w, 3%, etc., and for k =3
we get the levels 3fiw,lfiw, W iw, etc.

In the case of the oscillator the physical states are essen-
tially identical to the group states [basis vectors of & * (k)
representation]. There are many examples where this is not
the case. An explicit example will be given in Sec. IV where
we discuss a simple model of superfluid helium. For now let
us just state that the Hamiltonian can be written in the form

H=aK,+ bK, +c,
where a, b, and ¢ depend on parameters of the potential. The
eigenvalue problem is

-~ N ~J

Hiy,) =E,[¢,). (2.9)
Now perform the “tilting” transformation on Eq. (2.9), i.e.,
write

o = e N Y,

6,71191(2 He:BKzeszthbn) :Ene—wkzhp"). (210)
From the Baker—-Hausdorf-Campbell formula we have

e KK et % — K cosh @ 4+ K sinh 6, (2.11a)

e K e+ ®: = K sinh 8 4 K cosh 6,

so that
e~ "% Fle + K. — K (acosh @ + bsinh 6)
+ K (asinh € 4 bcosh 8) + ¢. (2.12)

With the appropriate choice of 6, the coefficient of K, will
vanish and we obtain the discrete part of the spectrum from
the new eigenvalue problem

(2.11b)

Hl¢,) =E,|¢,), (2.13)
where

H = K (acosh 8 + bsinh ) + ¢ (2.14)
and

[¥n) = e[, (2.15)

|r1//\,,J) is the physical state and |¢, ) is the corresponding
group state. Note that here § depends only on potential para-
meters so that the tilting operation is a unitary transforma-
tion. For some problems where SU(1,1) is relevant, this is not
the case, e.g., the Coulomb problem (see Wulfman'?).

We now describe the SU(1,1) coherent states as defined
by Perelomov.* These states are obtained by operating on the
fidicial vector |y, ) = |k,0) with the group element

exp( — ipKylexp( — itK,)exp( — iYK,).
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Up to a phase this element can be written as
D(a)=explaK, —a*K_), (2.16)

where @ = — (1/2)e ~*, in analogy to the displacement op-
erator of the ordinary coherent states. Using the Lie algebra
{2.2), Eq. {2.16) can be written

D (a) = et%~eKee?™ -,

where { = — tanh (7/2)e ~ “,8 = 2In cosh (7/2)
=1In(1 — |¢ |*),and ¥ = — & *. Thus the coherent states are

|5,k ) = D (a)ldo)

(2.17)

or
61 = (1 — | [)Fe%- |K,0). (2.18)
Since
_ F (2k ) i/2 u
ko) = (———n! T 2k)) (K. )"1#,0), (2.19)

we have, on expanding the exponential in Eq. (2.17),

ke (Lin+2k)\2,,
k) =1 =g P15 (FEEEL) .
(2.20)
The overlap of two states |{,n) and | 'k ) is given as
(Ck|Gk) =1 =& (=18 P —=E*8)~ %
(2.21)
Unity is resolved as
— [k gkl 2.2
where
2k—1  d*%
du(C) = 2.23
i (€) TP (2.23)
for k #1 and, for k = J,"
1 d¥%
du,, _— 2.24
unlg)= e (2.24)

In the event that physical and group states are related in
the manner of Eq. (2.15) it would seem prudent to define a
corresponding physical coherent state |£,k }. We take this
simply as

EX) = e+ it k).
The resolution of unity and the overlap are unchanged by the
replacement |,k )—|{ .k ). However, matrix elements rel
ed to the physical quantities must be calculated with |g,
and in general are not the same as those calculated with
1€,k ).

For later use we present matrix elements of X, , K _,
and K,,. These are

(2.25)

, , 2k 7+

K, E)/ .- S, 2.26
LI/ 1) = 2 2260
(] SISV ls >——k§— (2.26b)

— &%)

(' Kol8)/4C16) = k(14§ *6)/(1 — §'*E). (2.26¢)
These are easily derived using Egs. (2.11), (2.18), and (2.21).
We can define a propagator in terms of SU(1,1)CS as
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KT = zk: (E/?]exp[ — %fIT]IE,\kJ) (2.27)

or

K(E6T)= 3 (' lexp[ - %Hr]lg,k ), (2.28)

where H = ¢'*cHe * %2, For the harmonic oscillator 8 = 0
and using Eqgs. (2.8), (2.20), and (2.21) it is easy to show that

K(¢6T)= Ek‘, (6" lexp( — 20K,T)|5k )
— k§/4e——2i¢uTk (grlge——Zin)
= X eI - e P

X(1— ¢ *geeT) =2, (2.29)

where we have summed over the representations required to
cover the states. As a check we can determine the partition
function

3/4

Z=TrK('L, —ifB) = Z Z, (2.30)
k=174
where
—2kﬁmﬁf '2k—1| 2§(I_|§|2)|2k—l|—l
X(l_ —2ka|§|)—]2k—1|—1 (231)
(see Ref. 13).
We obtain
o —fwB/2
Z,, = —_—_1 P (2.32)
o~ B2
Zy = T (2.33)
so that
o — B2
Z=2\4+2Z;, =——‘1 g (2.34)

which is, of course, the correct result.

{Il. PATH INTEGRAL AND CLASSICAL DYNAMICS

We now consider the path integral expression for the
propagator given by Eq. (2.27). Defining € as T /N and using
Eq. (2.22) we write in the usual manner

KiE&T) = 3 € klexp| - L 7] 12X o)

—Zglmf"-f (;’;fk |e*“/""’7'lm>
Xy vk e mE|E TS
~ — N N—1
""<§’k leh(i/ﬁ)EHI§01k> H duk(gj)! (32)

j=1
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K(;”g;T)=13T:° ZJ.'[ INI (é?]é'e—(i/ﬁ)el?m—jAl,k)

N-1 =
x [T dulé)), (3.3)
where gjo ¢ and {y = ¢'. For small € we have
(G le= M ET Ry = (£ ko~ o1 — —;i- eH et K:
X161k ) = G| = €BIg; k). (3.4
Then with

(& k(1 —%eﬂng_l,m

= Gkl )1 - e )]

=Gkl o] — L], )
where
%pk(gj:;j_ )= (gj!k IH |§/— 1’k >/<§j’k Igjfl’k>

(3.6)
Eq. (3.3) becomes

K(EET) = 1313; 5’7‘ JJ f[ exp{In{¢;,k |, _ .k

— el ) ] M el 37)

j=1
With §;, | =&, — 4¢; it can be shown, using (2.21), that to
order 4¢,

ln<§j’k |§J__ 19k

Thus we have
Knet)=in ZJ e p[%i[uiﬁ(;ﬁ

(1;*_§*4;,,)
—HAQQ;,”Ilﬁu@ (3-8)

ji=1
In the continuous limit this may be written as

(§ *AL; — §AL%).

|§|

KE6T) =3 [ Du | L[ 2ithe i),
" (3.9)
where
L6 L )= e ) = e )
LN (3.10)

With S = (% .% . dt and setting 8S = 0, we obtain the
Euler-Lagrange equation

d (8,2’ x ) 8.7, —0

dr\ of a
and its complex conjugate. Using (3.10) this can be shown to
yield the analog of Hamilton’s equations

(3.11)
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§=11—|§|2)3%k
2k I+
be_ (1817 9%
r= - i (3.12)

Poisson brackets can be defined as

{48y =061 (a—A@--a—A aB) (3.13)

2itk at* ot 9t o+
and Egs. (3.12) can be written as
§: {;’%k}’
sr={sx7 ) (3.14)

Comparing Eq. (3.13) with Berezin'* we see that we are deal-
ing with a curved phase space in the form of a Lobachevskii
plane. In terms of the group parameters 7 and ¢,

{A,B}~—-1—~{8—A£—fia—3} (3.15)
fiksinhr ldr d¢ I¢ o
For the harmonic oscillator we have H = 2fiwK|, so that
FE,6 *) = 2hwkcosh 7 (3.16)
and the equations of motion are
+={r,# 1} =0, (3.17)
¢ =1{8,7(1)} = — 20. (3.18)

The solutions to (3.17) are simply 7 = const,

¢ = — 2wt + ¢,, which shows that for the oscillator the pa-
rameters 7 and ¢ are closely related to action and angle varia-
bles in this curved phase space.

Now since the tilted form of H will by design depend
linearly only on the operator K| it is easy to see that for
almost any system where SU(1,1) is the SGA, that system
will classically appear as some sort of harmonic oscillator.
Explicit examples will be presented in the next two sections.

(V. APPLICATION TO A MODEL OF SUPERFLUID
HELIUM

As an application of the formalism developed in the
previous section, let us consider the SU(1,1) treatment of a
superfluid Bose system as discussed by Solomon.® The Ha-
miltonian for this system can be written as H = 3 H,,
where

H,=¢€,0,a, +52V o, 81 ,a,8,, (4.1)

where €, = p*/2m. lemng ourselves to the case where
there are only three states such that p,q,r take on values
(— 1,0, + 1)and wheree , =¢€,6,=0,V, =V, V;=0,
along with the assumption of a macroscopically occupied
ground state (3,,8," ~N /%), we have the reduced Hamilton-
ian

Hy=(e+N,V)ata, +a*a_)

+NViagrar +a a_). (4.2)

This Hamiltonian can be cast into a form which is linear in
SU(1,1) generators by noting that

Ky=—4atar +a,a_ ),

K,=lilata*r —a,a ),
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and

Ko=@ta, +a*a_ +1) 4.3)
provide a realization of SU(1,1). Thus

Hy = 2N,V (yKo — K, — 1), (4.4)

where ¥ = 1 4 €/N,V. Discrete energy eigenvalues are
found via diagonalization through the tilting operation

He=¢e" 6K, H, oi0H:

= 2N,V [Kycosh 8 — sinh 8)

— K,(cosh 6 — ysinh 8) — 1y]. (4.5)
If V> 0 then ¥ > 1, so choosing & = coth ™'y we obtain
H =2N,V (csch 8K, — Ly). (4.6)

(This is the group theoretical version of the Bogoliubov
transformation.) The Casimir operator for this system is

C,=K)—K}-Ki=}4’-1, (4.7}

~

whered =ala, —a*a_ sothatk=1+1|4].

Since K haseigenvalues{n + } + 1|4 |)theenergy spec-
trum is

E,=2n+ 1+ |4 )E— NyV—e¢,
where

E = (2eN,V + €)"2,

The propagator for this system can be written as a sum
over all possible |4 |.

(4.8)

K(§'.5T)= ;KM;@'{;T), (4.9)
where
K|A|(§"§;T)= (é’\!;cp exp[ _%HR] §(,\k:)
= A}Tlff ,-Ijx d#m | (§j)Jl;Il
€l ik (, 45;* A
XexP{_ﬁ_{(l TR\ T T )
— 2N,V [kesch O(1 + £,*¢,_ )/
(t=&*6 1) —r]. (4.10)

Thus we see that on the Lobachevskii plane the classical
motion will appear like a harmonic oscillator with frequency
@ = Ny¥ csch 8 /4.

The results here can easily be generalized to the multi-
level system where the relevant dynamical group is
1T,  SU(1,1),. In this case the SU(1,1), generators are real-
ized as

K= —y@arar, +
KP=lilarat, —a
{4.11)

so that the Hamiltonian is now (to second order in &)
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H=NV,+ SNV, K0 —KV ),  (412)
P
where y, = 1 4 €,/NV¥, and where
N=No+ Y@ a,+a*,a_,) (4.13)

p>0
is the total number of particles. The group states for this
Hamiltonian will be given as the representation
1T, 2 *(k,), where k, = } + 4|4 |, and where
4,=a a,—-at,a_,. Thephysical SU(1,1)CS are

|fEJ}) _ H|§”7‘:> _ He;epx%’)'é_,kP).

The propagator can be written as a product of sums of the
form of Eq. (4.9)

K(§'&T)=e= W] 2 Kia 66T,
P 14p

(4.14)

(4.15)

where

K]Apl &'&T)= fgﬂfapJ &)

X exp{% LTdt [ m iﬁllz_lz)_

X(EE* — £*E) — 2NV, [k csch 6,

X(1+ 16 /1~ 67 - i, 1 |
(4.16)
The grand canonical partition function (GCPF) can be
evaluated quite easily in the SU(1,1)CS formulation. For this

we need the number operator in terms of the SU(1,1) genera-
tors. From Eqgs. (4.13) and (4.11) we have

N=N,+ 2(21(‘5’1— 1).
p>0
This is diagonal in the group states |k,n) having eigenvalues
Ny + (2(k, + n) — 1= N, + 2n + |4 |,. The corresponding
number operator in the physical basis }i,\nJ ) must therefore
be

(4.17)

N=N,+ 3 27Tk e _ (4.18)
p>0
Thus the GCPF can be given as
Z=TiK'(¢" ¢, — ifB),
where
K¢ —ifB)
. _ T —~ - ~y
= e exo[ LW |[ED -
Y T;NVoTe;i;ANOT
XTI 2K (ap16 65T {4.19)
P |4p| T= —i#g
and where

K !,Apl ‘; I’g;T)

= ko] - Ll i) |1EE,).
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ForN, =2K% — landH ) =NV, (y, K& — KV — Ly, ) we
get
K \,Ap] (§' 5T)

= exr>[—~T(— —#)] &'k, |

XexP[ - l_ﬁ—[zNVPCSCh G, — 2] K‘(‘)”’}lé',k,,)-

(4.20)

Using Eqs. (2.20) and (2.21) we obtain an exact expression for
K FRE namely

K, § §T)_exp[ﬁT(l’—’——-,u)]exp(%akaT)

2
X (1= 167 — (¢
(1o =)
{4.21)
where a, = 2NV, csch 6, — 2u. Letting T = — i and

taking the trace we have

Z,, =expB (YT” - — apkp) f du, (EN1 — |¢ 2%

X (1 —e A1y~ (4.22)
which can be integrated to yield
— apkpﬁ
Zyy =S (423)
1—e P%

So finally, the GCPF has the following decomposition in
terms of SU(1,1)CS:
Blrp — aph + 44l

Z — e~ BNV/2 - uN.,lH(e—Bu)z___..—ﬁ_- {4.24)
~ pa,

V. APPLICATION TO THE MORSE OSCILLATOR AND
THE HYDROGEN ATOM

A. Morse oscillator

We consider here the problem of a particle bound by the
Morse potential, '’
V(g) = D{expl — 2a(g — go)] — 2bexp[ — alg — go)1}.
(5.1)
For the S states (i = 0) the Hamiltonian can almost, but not

quite, be written in terms of SU(1,1) operators. The algebra
in this case can be realized as'®

0= h [.32 —2ME ] + lhig), (5.2a)
= [}~ 2ME] — }(g), (5.20)
a‘h(q)
Ky =—igp+1)—— (5.2¢)
aq

where
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1/2
hig) =M exnl — alg — g0, (5.3)

The Hamiltonian is thus
. 2
H=M(Ko—i(2mp)”2) —E . (5.4)
2m \ a

The energy levels can be found from the eigenvalue problem

i(sz)”Z)lv//,.)zo. (5.5)
a

5 _hi@ [
(& - E),) = (Ko

Since the terms in the parentheses in (5.5) depend only on K,
we may take |, ) as a group state, i.e., the tilting angle is
zero. To find the energy levels take note that

C,=K2—K?-K2=-"22_ - (5.6)

a’ 4

sothatk = §(C, + })"/% Thus with |¢, ) = |k,n) we have the
energy levels'”
alb 2
E, = ———[—(ZmD )2 (n+y|, (5.7)
2ml a
where

n=0,12,..,7..., where n_, + 1<b(2nD /a)'2

The path integral for the Morse oscillator can be constructed
as

K(E6T)= lim S - fﬂduk@,

ji=1

e 2)

i=1

B ’t’)”’ (5.8)
where
2h(qlt,
yf{gj,gj_,tj)za_i(?}ﬂ
X[kw‘iﬁmm”z —E.
(1=816-1)

(5-9)

Let us now follow Duru and Kleinert'’ in reparametrizing
time by making the transformation As(t) = f'dt’ h(g(z)). If
we choose A = (8mD /a)"/?, s will have the dimensions of
time. With o =5, —s; _, and Ao = h{g(t;))e we have

K¢ &T) =e zj fnduk(é)n
io fik [451 - ag;
Xe"p[? TETE\CAFY )
cHGE ) b 1/2]]
2m —————————(l_gjé_j_l) —a—(ZmD) .

(5.10)

Inserting a factor

o wolr- [ 55)

to allow s to be treated as an independent variable, we have in
the continuous limit
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K(EW&T) = e~ 5177 f “as a(r_ dsﬁ)h_:;)

X;f@uk@')

Xexp[%f'ds ZL et *')], (5.11)

where
Pegeng )= =€)
el LER
2ml (= 1EP)
— i(sz)”Z] (5.12)
a

and where the prime means derivative with respect to the
new time-like variable. The equations of motion will simply
be those of Eq. (3.12) with the replacement —s. It is straight-
forward to show that the motion will be oscillator-like with
frequency w = a’A /4#im. Thus, using a reparametrization of
time in the SU(1,1)CS path integral we can make the Morse
oscillator appear as a harmonic oscillator on the Lobachevs-
kii plane.

B. The hydrogen atom

Finally we consider the case of the nonrelativistic hy-
drogen atom. As is well known, SO(2,1){ ~SU(1,1)} is the
relevant spectrum generating group and is in fact a subgroup
of the much larger dynamical group SO(4,2).'® The SO(2.1)
subalgebra is realized as

K, = (rp> + mr)/2m, (5.13a)
K, =(rp> — mn/2m, (5.13b)
K, = (#p —i). (5.13¢)
Unfortunately the Hamiltonian of the H atom
H= r_e (5.14)
2m r

cannot be written as a polynomial in the SO(2,1) generators
of Eq. (5.13). Instead one writes the energy eigenvalue prob-
lem as

~ ~J
HH —E)[g) =0 (5.15)
and then, using Eq. (5.13), obtain
2P =0, (5.16)
where

R(E)=nH—-E)
=[—‘—(KO+K.)—£(KO—K,)—e2]- (5.17)
2 m

Applying the tilting operation to (5.16) with the tilting angle
O chosen as

6 (E) = arctanh{(2E + m)/(2E — m)}, (5.18)
we have
~ . . ~J
e~ iG(E)K,n (E )eIB(E)Kze— IG(EDK2'¢> — n (E)l¢) —_ O,
(5.19)
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where
R(E)=e PERQ(E)®EX: = (_2E /m)' /2K, — ¢
(5.20)
and where
) = r"“”‘zf%. (5.21)

Now for the H atom bound states, a particular set of basis
states for SO(4,2) are labeled |nlm) where / and m are the
usual angular momentum quantum numbers and # is the
principal quantum number. These labels arise from the de-

composition SO(4,2) DSO(3) @ SO(2,1) which corresponds to
Im nl

a separation of variables in spherical polar coordinates. The
number / is attached to both SO(3) and SO(2,1) because of the
fact that the groups are “coupled” through the equality of
their Casimer operators; i.e., if L; = €, (Pxp)* generate
SO(3) then using Eq. (5.13) we have

C,=K)—K?—K,=L>=\L,L,. (5.22)

Thusk (k — 1) = /(! + 1)sok haspossiblevaluesk = — /or
k =1 + 1. Only the latter choice leads to a unitary irreduci-
ble representation. In this case the action of K on [nlm) is to
give the principal quantum number n.

Ky|nim) = n|nim), (5.23)

wheren — [ — 1 = n, is the radial quantum number. We can
relabel the states as |/ + 1,n,) in accordance with the con-
vention used for SU(1,1) states throughout this paper. (The
azimuthal quantum number has been suppressed). With
l¥) =|{ + 1,n,) inEq.(5.19) we obtain, from Egs. (5.20) and
(5.23), the energy levels of hydrogen

E, = —me*/2n*

i (A=1). (5.24)
Note that since the tilting angle depends on E,,, the transfor-
mation (5.21) gives a one-to-one relationship between the
physical states and the group and is therefore nonunitary.
Now in constructing the SU(1,1) functional integral for
the H atom two problems arise. The first is that H is not
polynomial in the SU(1,1) generators and the second is non-
unitarity of the tilting transformation. One could write H as

m

g=Ltym)= [i(Ko +K)—& (5.25)
r 2

0o 1
and then write a path integral expression as in Eq. (3.9) with

~v J
HL*) =m fd,uz@ NE Ko — K,)7HET)

~ [onrd
XA 3K + Ky — €118 ) - (5.26)

However this expression is awkward because of the presence
of (K, — K,)~! and in any case the physical coherent states
are not yet defined. In fact, it is not clear how they would be
defined since, unlike the case for superfluid helium, the tilt-
ing is nonunitary.

We avoid these difficulties by writing a functional inte-
gral for a resolvent whose poles yield the bound state energy
spectrum. We write

GE)=Tr1/2(E), (5.27)
where 2 (E ) is given by Eq. (5.20). In terms of the state
ll + l’nr>
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_ |1+ 1,n,) (I + Ln,|
B Z Z (—2E/m)"?n, +1+ 1) — €

This obviously has poles when £ is given by Eq. (5.24).
We write G (E'] as

(5.28)

G(E)=—1,—f dT Tre =2 ET {5.29)
iJo
and evaluate the trace with SU(1,1)CS to get

G(E)'_“ZGI(E)»

where
G/(E)
= [T du €+ tlem e+ ),
(5.30)
and where
e rn, +21+2)]1/2
Gl + 1) = (1~ ] zzo———-’!rm“)
x&"+ Ln, ). (5.31)
We now define
GS &T) =45 A+ Ue “BTILI+ 1), (5.32)

which by the usual methods can be written as the functional
integral

6i& 4= [ D cuessli [ ar 2], 533
where

- 1(1+l WY e

“Tn-Zn £ — 2,687 (5.34)
and where
2E5Y =G+ 1R(ENLI+ 1)
= (= 2E/m)" i+ 1)—“ +IED) 2 (535)

~ 1§
£2,(¢.¢ *) may be thought of as a sort of auxiliary zero energy
“Hamiltonian” which is oscillator-like on the curved phase
space.
G,(E ) canbe evaluated exactly. From Eq. (2.21) we have

Gl(g ’,;;T) —e~ il(— 2E/m)" 3l + 1) — €)T

XU =g =g !
X [ 1— g ""§e — i — ZE/m;'”T] -2+ 1)‘
(5.36)
Upon taking the trace we find that
G/(E)= iJ.w dT e/'e — (- 2E/m U+ T
0
_ 172 -
X [sin(( ak ) I)] (5.37)
m 2
Using the identity
1 at fat) & .
= —_—— _ l ,
% sm( 2 )] CXP( 2 ) n,Z'oexP( )
(5.38)
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we obtain

E)=i iof:dT

xexpli[e? — (—2E/m)"* (I + 1+ n,)]D), (539
which upon integration yields
b 1
G,|E)= ,
) n,Z;O[ + (= 2E/m)"¥n, + 1+ 1) — €]
(5.40)

which obviously has poles at the bound state energies given
by Eq. (5.24). It is interesting that the identity (5.38) is the one
used to obtain the bound state energies of the one-dimension-
al harmonic oscillator.

VI. CONCLUDING REMARKS

In this work we have, in a sense, done the converse of
the work of Nieto and collaborators” in establishing coher-
ent states for potentials other than the oscillator. As we said
earlier, their approach is to map the classical problem onto
another classical set of variables such that the Hamiltonian
has the appearance of an oscillator; the coherent states being
a set of states which minimize a new uncertainty relation
constructed from the quantum analogs of the new variables.
What we have done is to take coherent states defined for the
dynamical group SU(1,1) and through a path integral deter-
mined the equivalent classical problem. We have found that
the relevant phase space is curved—the Lobachevskii
plane—and that for problems where SU(1,1) is a dynamical
group, the motion will look oscillator-like in that space.

We have also attempted to show the utility of SU(1,1)CS
in calculating the partition function of a simple model of
superfluidity. It should be remarked that if the ordinary co-
herent states are used to calculate Z from the Hamiltonian of
Eq. (4.2), one immediately encounters the problems of the
mixing of modes + and — . This problem is circumvented
with the SU(1,1)CS, which have the further advantage that
the Bogoliubov transformation is automatic.

Finally we mention another possible application. For
an N-dimensional oscillator SU(1,1) is the dynamical group
and the representations which cover the states are given by
k = (I + N /2), where ! is the usual angular momentum
quantum number. Indeed SO(2,1) has recently been shown
to be useful in forming a large N expansion in quantum me-
chanics.'® In that work the method is perturbation theoretic.
However, if we look at Eq. (3.8) we see that # cancels out of
the exponential altogether if ¥ is given by Eq. (3.16), indi-
cating that 1/k could play the role of #. This leads us to
believe that we might construct a Bohr-Sommerfeld type
quantization rule and determine the energy levels for such
things as the anharmonic oscillator without the need for tak-

ing the limit N— o0 . Similar considerations have been used
for pseudospin Hamiltonians.?® This and related problems
will be discussed elsewhere.
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The present series of papers deals with various realizations of the dynamical group.”4_(2d,R ) of
microscopic collective states for an 4 nucleon system in d dimensions, defined as those 4 particle
states invariant under the orthogonal group Of{n) associated with the n = 4 — 1 Jacobi vectors. In
the present paper, we derive two boson representations of .#4_(2d,R ), namely the Dyson
representation and the Holstein~Primakoff (HP) one. Our starting point is a representation of
microscopic collective states, as introduced in the first paper of the present series, in a Barut
Hilbert space.*  of analytic functionsinv = id (d + 1) complex variables. Basis functionsin.~ _,
classified according to the chain .4 .(2d,R } D % .(d }, can be put into one-to-one correspondence
with basis functions, classified according to the chain W{v) D ll(d ), in a Bargmann Hilbert space %
of analytic functions in v complex variables representing v-dimensional boson states. By equating
the complex variables of .5 _ and their conjugate momenta with those of %7, we get the non-
Hermitian Dyson representation of .“ % (2d,R ). We then go from the latter to the Hermitian HP
representation by means of a canonical transformation that restores the Hermiticity properties of

the variables and conjugate momenta. The inverse of the HP representation gives the unitary
representation in quantum mechanics of the classical canonical transformation relating the
oscillator Hamiltonians of the microscopic collective model and the boson macroscopic one.
From the v boson creation and annihilation operators, it is possible to build the generators of a
1(v) group, which in the physical three-dimensional case reduces to 11(6). The latter is finally
compared with the U(6) group appearing in the interacting boson model.

PACS numbers: 02.20. + b, 03.65.Fd, 21.60.Fw

1. INTRODUCTION

In the present series of papers, we study various realiza-
tions of the dynamical group of microscopic collective states
for an 4 nucleon system. As was suggested by some auth-
ors, "2 the collective subspace of the 4 nucleon space is as-
sumed to be spanned by all the 4 nucleon states invariant
under the transformations of the orthogonal group O{n) as-
sociated with the n = 4 — 1 Jacobi vectors. This subspace
carries a single irreducible representation (IR) of the dyna-
mical group of collective states we are concerned with.

In the first paper® of the present series (henceforth re-
ferred to as I), we showed thatind dimensions the dynamical
group of microscopic collective states is the restriction to the
collective subspace of a symplectic group in 2d dimensions,
F4(2d,R ), and we denoted it by S 4.(2d,R ). In the physical
three-dimensional case, the latter reduces to “4.(6,R ). We
then proposed various realizations of %4 (2d,R ) that we
studied in detail only in the one-dimensional case.

In the present paper, we wish to establish a relationship
between the O(n) invariant microscopic collective model and
the interacting boson model* (IBM) of Arima and Iachello
through the study of boson representations of FhA6,R ). As
the IBM, which is based upon a U(6) group, is quite success-
ful in describing many nuclear collective states, there have
been recently various attempts® to microscopically explain
the U(6) symmetry first introduced from a macroscopic
viewpoint.

* Maitre de recherches F.N.R.S.

2004 J. Math. Phys. 23(11), November 1982

0022-2488/82/112004-12$02.50

In the O{n) invariant part of the A-body problem, the
possible appearance of a 11(6) group was first noted by Vana-
gas' in an indirect way through the branching rules for the
IR’s of the groups characterizing the collective states. Later
on, Moshinsky and Seligman® determined in two dimensions
the classical canonical transformation relating the oscillator
Hamiltonians of the microscopic collective model and the
boson macroscopic one. The latter has a U(3) symmetry
group, which is the two-dimensional analog of U(6). The
generalization of their work to three dimensions seemed,
however, difficult to carry out due to the explicit use of the
Dzublik’-Zickendraht® coordinate transformation.

In I, we proposed to realize the dynamical group in d
dimensions, %4, (2d,R ),intermsof v = 1d (d + 1)bosoncre-
ation and annihilation operators through a generalized Hol-
stein-Primakoff® (HP) representation and to invert such re-
presentation in order to express these boson operators in
terms of the generators of %, (2d,R ). From the v boson
creation and annihilation operators, it is then straightfor-
ward to construct the generators of a ll(v) group, which in
the physical three-dimensional case reduces to 11(6). The in-
verse of the HP representation of .¥4.(2d,R ) gives the uni-
tary representation in quantum mechanics of the classical
canonical transformation relating the osciilator Hamiito-
nians of the microscopic collective model and the boson
macroscopic one.'”!! We have therefore found a way to gen-
eralize the work of Ref. 6 to any number of dimensions.

As in I detailed calculations were performed only for
#/.(2,R ), we carry them out for the d-dimensional case in

® 1982 American Institute of Physics 2004



the present paper. Actually we shall not only study the HP

representation of 4. (2d,R ), but also the Dyson'? one. For
such purpose, it will turn out that the Barut representation of
microscopic collective states, introduced in I, is a good start-
ing point. By Barut representation we mean a representation
in a Barut Hilbert space'® . . of analytic functions in v com-
plex variables. Such Barut Hilbert space is the O(n) invariant
subspace of a Bargmann Hilbert space'* % of analytic func-
tions in dn complex variables.

The function in v complex variables which represents a
given microscopic collective state in the Barut Hilbert space
F . can be put into one-to-one correspondence with an ana-
lytic function in v complex variables representing a definite
v-dimensional boson state in a Bargmann Hilbert space % .
Basis functions in .% , are classified according to the chain
Fr.(2d,R)D % .(d ) while those in & are classified accord-
ing to the chain ll(v)DU(d ). The one-to-one mapping
between # . and & is such that functions transforming in a
given way under % _(d ) are mapped onto functions trans-
forming in the same way under (d ). Any microscopic col-
lective state has therefore a boson image; from this mapping
one can then derive the boson image of any collective opera-
tor, and in particular that of the generators of .#4_(2d,R ).

The boson representation of .%4_(2d,R ) obtained in
equating the complex variables of %, and their conjugate
momenta with those of % is the non-Hermitian Dyson re-
presentation, which is therefore essentially equivalent to the
Barut representation. We can also go from the latter to the
Hermitian HP representation by means of a canonical trans-
formation relating both sets of complex variables and conju-
gate momenta, which preserves their commutation relations
and restores their Hermiticity properties.

In Sec. 2, we start to review some results obtained in I
for the Barut representation of microscopic collective states
and then establish the forms of the % 4_(2d,R ) generators
which will be relevant for the present study. In Sec. 3, we
explicitly construct the representation in .% , of the micro-
scopic collective states classified according to the chain
S 4.2d,R)D % .(d) and of highest weight with respect to
% .{d), and that in # of v-dimensional boson states classi-
fied according to the chain l{v) D 1l{< ) and of highest weight
with respect to 1i(d ). In Sec. 4, we turn to the general form of
irreducible tensors 7"[20] with respect to 1l(d ) and determine
some selected basis for them. We are then in a position to
explicitly derive the Dyson and HP representations of
Z/.(2d,R )in Secs. 5 and 6, respectively. For the latter both
a compact form and a finite expansion are obtained. Finally,
in Sec. 7, we compare the 11(6) group obtained in the present
picture and the U(6) group of the IBM and briefly discuss
some possible extensions of the method of getting boson re-
presentations developed in the present paper.

2. BARUT REPRESENTATION OF ¥ _(2d,A)

A translationally invariant system of A fermions in d
dimensions can be described alternatively in terms of its Ja-
cobi coordinates x;,, i = 1,....d,s=1,..,.n =4 — 1, and

their conjugate momenta p,, = — id/dx,, or in terms of the
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corresponding boson creation and annihilation operators 7,
and &;. To the n Jacobi vectors is associated an orthogonal
group O(n), under whose transformations the 4 particle col-
lective states are assumed to be invariant.'

In I, we considered an oscillator basis for the collective
subspace of the A particle space, spanned by the states

d
|8, i) = A ] (25)V10), (2.1)
iG=1
depending upon v = } d (d + 1) quantum numbers N;
1<igj<d, which can take all non-negative integer values. In
Eq. (2.1}, ay,y,...x,, is some normalization coefficient, |0) is
the boson vacuum state, and the operators &}, are defined

by

D=9} = Y msms  1<igj<d. (2.2a)
s=1
With the operators
‘@’J = @J' = z §,‘3§js’ 1<i<j<dy (Z'Zb)
s=1
and
&, =%, + %5,.,, Cy= Nubyr bhj=lod,
s=1
(2.2¢)

they generate an ¥ 4(2d,R ) group. The states (2.1) belong to
the single IR ((n/2)*) of #4(2d,R ), so that the dynamical
group of microscopic collective states is the restriction
/.. (2d,R ) of #4(2d,R ) to the collective subspace. Its gen-
erators are denoted by .@f], 25 and €&y =%5 + (n/2)5;,
respectively.

The A particle states can be represented in a Bargmann
Hilbert space'® of analytic functions in dn complex variables
z,,i=1,..,d,s = 1,..,n. In 5, the boson operators 7,, and
&, arerepresented by z,, and d /9z,, respectively. The collec-
tive subspace of the A4 particle space is then mapped onto the
subspace .# . of ¥ which is left invariant by O{n). It was
shown in I that any collective state |i) is represented in 7,
by an analytic function
P, W15 sWag ) = (W1 W05 Way |¥) in v complex collec-
tive variables

wy =wy; =Y 2,2, 1<igj<d. 2.3)
s=1
In particular the basis states (2.1) are represented by the
functions

(W) Wy Way '¢N,,N,,---N4, )
n

= aN,,N,,---Ndd H wij N’j' (2'4)
iG=1

The space # . can be equipped with a scalar product
which is preserved in the one-to-one mapping between mi-
croscopic collective states and analytic functions of %,

<¢ l'/’) =jd01w11’w12!""wdd)

X{¢ lelwn"'wdd) (wllwIZ'"wdd l¢> (2.5)

The measure do(w,,w,,,...,w44) directly derives from the
measure'* of the Bargmann space #, I1?_ , I17_, du(z,,),
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where
dulz,)=7""'exp(—z,z*)}dRez, dImz,, (2.6)

by integration over thedn — v noncollectlve variables. In the
present study, we shall not need its explicit form, which was
determined in I only in the one-dimensional case. We shall

therefore leave its determination in the d-dimensional case

for a subsequent paper.

F . is called the Barut subspace of # and the represen-
tation of microscopic collective states in % . their Barut re-
presentation because a scalar product similar to the one de-
fined in Eq. (2.5) for d = 1 was already considered by Barut
and Girardello."? Instead of the basis (2.4) of % ., we could
use as well a basis of coherent states associated with the Lie
algebraof 7 (2d,R ), as these authors did and we explicitly
showed in the d = 1 case.

In the Barut representation, the generators of the dyna-
mical group .* 4, (2d,R ) are represented by the following dif-
ferential operators:

DT =wy,
(92
;( xi )l Wi EYRETS
+n(l+6,) 9 (2.7)
ow;
and
c ¢ c d
E; =75 5,,, TG => (148w
2 T Iw;

which with respect to the scalar product (2.5) of F , satisfy
the same Hermiticity properties as the original operators,
ie.,
(25 = 7
and (2.8)
(gapf} )‘r —
They also satisfy the usual commutation relations of the gen-
erators of an . 4(2d,R ) group:

[€5.&u] =5jk?a”F — 6,84,

[&ow, ]=5 +6j§°@1k’

[¢5.24] = —-5,,(‘,@ — 6,95, (2.9)
(27,201 =195.2u4] =0,

[Z5 D3 =8,%5 +511gij +6, &5 +8,%5-

i y
In the present study, it is convenient to introduce a ma-
trix notation for the generators of 4 (2d,R ). Let 2T de-
note the d X d matrix whose elements are ¢, 1,j = 1,...,d.
In the same way, we define the matrices Z°¢, &°,and €. In
.» the complex variables w; and the corresponding differ-

entlal operators 4, ;» defined by

g =(14+68;)8/dw, (2.10)
can also be considered as the elements of d X d matrices w
and A, respectively. All the matrices Z°7, Z°, w, and A are
symmetrical. The representation (2.7) of the generators of
Fr.(2d,R)in F . can be rewritten in matrix notation as

Dt =w, (2.11a)

i
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D= A[€° +(n—

and

d— 10 =[Z° +nl]A (2.11b)

& =€ + %I, € =wA (2.11¢)
where I denotes the d X d unit matrix and € ¢ the transpose
of ¢, i.e., ‘5 = ¢ §;. To obtain Eq. (2.11b), we have expli-

citly used the commutation relation
[4;.wi ] =648 + 846,
which results from the definition {2.10) of 4,,.
In Secs. 5 and 6, Eq. {2.11) will prove to be the appropri-
atestarting point to get boson representations of . (2d,R ).
However, before beginning to study such representations,
we first introduce in the next section still another basis of

& ., spanned by all the states classified according to IR’s of
the chain

Fr (2dR)DU (), (2.13)

where % . (d }is the unitary groupind dimensions generated
by the operators €', i, j = 1,...,d. The basis states (2.1), al-
though characterized by a given weight in % _(d ), do not
indeed belong to a definite IR of % .(d ) in general. Basis
states classified according to (2.13) will then be put into one-
to-one correspondence with representations of boson states
in a Bargmann space % .

(2.12)

3. BASIS FOR IRREDUCIBLE REPRESENTATIONS OF
THE % /. (2d,R) D % .(d) AND 1(v) D1i(d) CHAINS OF
GROUPS
Let us denote microscopic collective states classified ac-
cording to the chain (2.13) by
h hyh d>
(k) I
where [A s1,-+h,] is 2 Young diagram specifying the IR of
% .(d), and () is the row index of such IR. As in the follow-
ing we shall be concerned only with the highest weight state
(hws) of the IR [A A,--h,],
hihyh d>

(h )max
that we shall denote in short by |4, ), we do not have to
make any explicit choice for (# ), which might therefore be a
Gel’fand pattern'® associated with the canonical chain of
% .(d) or any other set of quantum numbers corresponding
to a noncanonical chain of % (d ). The collective states

’hlhg"'h
()

d> and b hohy)

are represented in .% , by

R

and {w,,w,yWyy |hhy-hy ), respectively.

Let us determine the explicit form of the representation
(W \Wyywag B Bk g ) of the hws of the IR [A,4,-h, ). By
definition, it must satisfy the following system of first-order
differential equations:

(W Wy Way
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z wikAki (wl Wi Wya |hlh2"'hd)
k

= hi (W W Wy [M hyhy ), D= 1,4, (3.1

and
Z wikAkj(wllwlz"'wdd |h|h2"'hd) =0, Iigj<d.
%

(3.2)

To find the solution of such a system, it is convenient to first
replace the set of v independent variables w;;, 1<i<j<d, by
another set of v variables, defined by

Wi, i il 2ei— 1y

= Z (— ”pw[p(l)wzp(zy Wi 1 pii - 1y Wipi o 1<igj<d,
? (3.3)

where the summation is carried out over the ! permutations
of the indices 1,2,...,i — 1, j. The new variables are minors of
order/ of det w. They are functionally independent and may
therefore be used instead of the w,; because their Jacobian
with respect to the w; is equal to

d—1 y
H (wl,Z,...,i;l,Z.“.,i) ~'#0.

i=1

Let us look for a solution of Egs. (3.1) and (3.2) of the
following form:

(W w2 Way ,hth"'hd>

d d
—_— ",
= Y H H (@12, = 11200 — 1)

Ny Ry fyy i=1j=i
(3.4)
where n;; are some non-negative integersanda, , .,  some
constants to be determined. By noting that
(2 wikAkj)wl.z,...J— L5120l — Lm
k
=08, W12 i 12 a1 1<i<j<d, (3.5)

and by successively imposing that Eq. (3.2) is satisfied for
i=1,i=2,.,andi=d — 1, it can be proved that the state
{3.4) does not depend upon the variables wy;(j> 1),

W20, (7> 2)sesWia,0d —2,d— 1512, .4 — 2, o~ It then reduces
to

(W, W)y Wag | hihyhy)

d
= z a”ll”n“‘"dd H (wl-zvuyf;'yzwui )nh M (3’6)
Ry fypfay i=1
It is then straightforward to show that Eq. (3.1) is satisfied if
nii =£(h, ‘—h,'+]), I= lr--,d— 1) (37)

and

Rag =4 hy.

Equation (3.7} implies that 4 ,,4,,...,h, must be non-negative
even integers.

We have established that .% , is a carrier space for the
direct sum of IR’s [, h,---h ;) of % . (d ), for which A, h,,....h,
may take any even values such that k,>h,>-->4,>0. Each
one of these IR’s appears with a multiplicity one in the direct
sum. Due to the one-to-one mapping between % . and the
collective subspace of the 4 particle space, the same is true
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for the latter. Moreover the representation in % . of the hws
of the IR [A,h,--h,] is given by

(Wi Waq lthT"hd)

d
=App.n, H (wl,z,...,i;l,z,...,i )“/2"‘" =k, (3.8)

i=1
where 4, , | is assumed to be equal to zero and 4, .., is
some normalization coefficient, determined by the condition

f do(w, 1, W), Waa ) (R Ayhy W W)W 4q )

X AW WipWag |Byhyhy ) = 1. (3.9

The representation in # _ of the other basis states of the IR
{A,A;++h ] could be obtained from Eq. (3.8) by applying some
appropriate lowering operators.

We shall now prove that the functions (3.8) can be put
into one-to-one correspondence with functions representing
boson states classified according to some group U(d ). For
that purpose, let us introduce v independent boson creation
and annihilation operators a}j = g}, and a;; = a;;, 1<i<j<d
(not to be confused with the operators-,, and £,;!). They
satisfy the usual commutation relations of boson operators,
which in the present case take the following form:

[a}.al;] = [a;.a41 =0,

{3.10)

[ay.a;] = Sy = (1 + 6ij)~l(6ik5j1 +6,6,).

1

From the operators a; and a;,

1<igj<d, 1<k<i<d,

of a U(v) group, whose commutation relations are

we can build the generators
(3.11)

@ij,kl = a:jakl’
[CoktsCogre ] = Staripe Ciirs — St Cpguta- (3.12)

Let us now define non-normalized boson operators by
the following relations:

=t __ 1/2_+

a; =(1+6;)"aj,

a; =(1+86;)"%a; =@} (3.13)

From Eq. (3.10), their commutation relations can be written
as

[a}.al,] = [3;.8.] =0,
(3.14)
[aipalll =0uby + 6,0,

1t is now straightforward to show that the operators €
defined by

i

(Sij = z afkajk = Z [(1 + 84 )1 + 6jk)] llz@ik.jk,
[3 k
(3.15)

satisfy the following commutation relations:

[@g,@u 1= ‘5jk €y — Sy @kj,
and therefore generates a 11(d ) subgroup of (v).

N boson states can be classified according to IR’s of the
group chain

Uv)Dud). (3.17)

They are characterized by the symmetrical IR [N] of U(v),
the IR [A,h,--h, ] of W(d ), and the row (h ) of the latter. As the

(3.16)
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first-order Casimir operators of l(v) and l(d ) are related by
the equation

Z €, =2 Z @:ij,[j:
i i<f

which directly derives from Eq. (3.15), NV is entirely specified
by the IR of ll{d ) through the relation

(3.18)

IN=3 h,. (3.19)

Boson states classified according to IR’s of the chain {3.17)
may therefore be denoted by

B hyh d)
h) /7

where we have used a round bracket in order to distinguish

them from the collective states

' h hyh, >

(7)
The hws of the IR [A,h,---h;] of l{d ) is written in short as
LRSI

As is well known, the boson operators a; and a;; are

represented in a Bargmann space'® 2 of analytic functions
in v complex variables §; = §;;, 1<i<j<d, by {; and 3 /35 ;,
respectively. The non-normalized boson operators z}; and a;
are then represented by

Eij =(1+ 5ij)1/2§fj
and (3.20)

d d
i = 1+6! 1/2——= 1+(5,~-_—,
Xi = | ) 2, ( 5) 7,
respectively. The generators of 11(v) and ll(d ) become the
first-order differential operators

€ =&, 9798k (3.21)
and

C‘Sij = z Eikaj’ (3.22)

k
and the boson states
hl}zz---kd)
(h)

are represented by N th degree polynomials in §;, 1<i<j<d,

or equivalently in §;, 1<i<j<d, that we shall denote by

(2 "7")

The representation (£,,,,C g |1,k ) Of the hws of
the IR [A,A,-+h ] of U(d ) must satisfy the following system of
first-order differential equations:

; Zikai(.El 1512"'54:1 1A ihyhy)
= hi(EllElZ"‘de lhhyehy), i=1,...4d,

(3.23)

and

; Zika;(lele"‘de |Ashyhy) =0, 1<i<j<d.
(3.24)
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This system has exactly the same form as the corresponding
system of Eqs. {3.1) and (3.2}, that we solved for the represen-
tation of collective states in 7, if we make £, and y,; corre-
spond to w; and 4, respectively. Such a correspondence

makes sense because y/; is defined in terms of £; in the same
way as 4; in terms of wy; as a consequence, the commuta-
tion relation of y; with £, is just the same as that of 4 ; with

wy;, given in Eq. (2.12), i.e,,

DvisCul =646y + 840 (3.25)

In close analogy with the corresponding assertion for
Z ., we may therefore state without proof the following re-
sult: 4 is the carrier space for the direct sum of IR’s
[hihyehy] of Wd), for which A,h,,....h, may take any even
values such that 4, >4,>-->h, >0. Each one of these IR’s
appears with a multiplicity one in the direct sum. The repre-
sentation in # of the hws of the IR [A,A,---h,] is given by

(EI lglf"gdd |hlh2'"hd )

=By p,n, H @1,2....,i;1,2,...,.‘)“/2)(}1' T,

i=1
where by =0, 5 1, isdefined in terms of the £,
by arelation similar to Eq. (3.3),and B,, ,, . is some normal-
ization coefficient. The latter is determined by the condition

H du(&;)\hihyehy |§1 1512"‘de)

i< =1

XE11612 6 aalhiahy) = 1, (3.27)
where du({;) is the usual Bargmann measure defined in Eq.
(2.6}, and Eq. {3.20) is used to express the {; in terms of the
;- Notethat B, , _, in general differs from the normaliza-
tion coefficient 4, , ., of Eq (3.8). Equation (3.26) general-
izes a well-known three-dimensional result'®-'® to an arbi-
trary number of dimensions.

We have established that there exists a one-to-one cor-
respondence between the representation of collective states
in % . and that of v-dimensional boson states in % {and
therefore also between the collective and boson states them-
selves): Each basis function

hhyehy >
th)
of # . is mapped onto the corresponding basis function

(é—’ R hnf:;--)-hd)

of & . The existence of such a mapping will enable us to
derive boson representations of ¥4, (2d,R ). As functions
transforming in a given way under % .(d ) are mapped onto
functions transforming in the same way under li(d ), the gen-
erators of % .(d ) must be mapped onto those of {d ):

¢ =6 (3.28)
In Eq. (3.28), we have introduced a matrix notation for the
generators of 11(d ) similar to the one used for the # £ (2d,R )
generators (in the same way, we shall use hereafter symmet-
ricald X d matricesa !, @, E, and ). It now remains to deter-
mine the boson representations of 2" and Z°. Some re-
sults useful for that purpose will be established in the next
section.

(3.26)

<wllw12"'wdd
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4. IRREDUCIBLE TENSORS 7[20] WITH RESPECT TO
I(a)

The transformation properties of the operators & fj*
with respect to % . (d ) follow from Egs. (2.7) and (2.9). The
relations

D =D (4.1a)

and

(45,2 =62 +6,25 (4.1b)
show that the operators Z;! are the components of a sym-
metrical tensor transforming according to the IR [20] of
% .(d ). Due to Eq. (3.28), in the fermion-boson mapping
they will be mapped onto the corresponding components of a
tensor transforming in the same way under ll(d ). We are thus
led to study the most general form of an irreducible tensor
T'[20] with respect to the group 11(d ). Such a tensor, whose
components will be denoted by 7, i, j = 1,...,d, has to satisfy
relations similar to Egs. (4.1a) and (4.1b), i.e.,

i

T, =T, (4.2a)
and
[y, Tu]=6uTy +6,; T, (4.2b)

Irreducibletensors 7 [20] w1th respecttoll{d )areeasyto
find. From their definition and commutation relations, it can
be shown that the boson operators & satisfy Eqs. (4.2a) and
(4.2b). More generally, the set of operators

T =(6"a"),, m=012,., (4.3)

form the components of a T'[20] tensor for any non-negative
integer m value. The proof that they obey Eqs. (4.2a) and
{4.2b) is most easily carried out by induction: Starting from
the relation

ijo

T = Z G, Tl ", (4.4)

the symmetry and commutation properties of T'" can be
shown to derive from those of T'{7 ~ !'. With the set of opera-
tors T\, we have almost exhausted all the possible 7'[20}
tensors because it can be proved that any irreducible tensor
T'[20]is a linear combination of the tensors 7' mom=0,1,.

7‘11 = z—:opm (¢1!'--’¢d)Tgm), (45)

whose coefficients p,,, (@,,...
{d ) Casimir operators

P, ) are analytic functions of the

@, =tr G = z .6 €., k=1..,d (46

The Eq. (4.5) demonstratlon is detailed in Appendix A.

Equation (4.5) gives the most general form of a 7'[20]
irreducible tensor as an infinite series. It may be converted
into a sum of a finite number of terms by noting that the first
d operators T, corresponding tom = 0,1,...,d — 1, form a
basis for the 77 [20] tensors. This means that they are linearly
independent and that any T "' operator, for which k>d, can
be written as their linear combmation. The coefficients of the
linear combinations are functions of the Casimir operators
D,,....0, of U(d).
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(hl"'hi'"hd

Before starting to prove the above-mentioned result,
one has to remember that any boson operator is entirely de-
termined whenever one knows its matrix elements between
arbitrary boson states classified according to the chain
(3.17). When applied to a boson state transforming according
totheIR [A,--h;---h, ] of N(d ), any T [20] tensor can only lead
to boson states transforming according to an IR
[A,h; + 2] for some 1<i<d. The Kronecker product
[h,h,h,] ®[20] is indeed given by

d

Y & [hyh +2h,],  (47)
=1
where the multiplicity of each IR appearing on the right-
hand side is equal to 1. According to the Wigner—Eckart
theorem,'? all the mairix elements of the components of
T'[20] between boson states transforming according to
[A,-h;hyz)and [A,h; + 2---h,] are determined by a single
reduced matrix element. Alternatively, one may use the ma-
trix element of an appropriate component of the tensor
between hws of the IR’s.'® In the present case, the appropri-
ate component is 7}; because it has to increase the eigenvalue
of €; by two and to leave those of €;, j#7, unchanged. We
therefore conclude that any 7°[20] tensor is entirely deter-
mined by the knowledge of the matrix elements
(hyosh; 4 2ohg | Ty |h b hg), i = 1,....d, corresponding
to an arbitrary IR [A,---h;] of l{d)

Now let us show the linear independence of the opera-
tors T'Y™, m = 0,1,...,d — 1. This amounts to proving that
the relation

d—1

Z am (¢1’

m=0
where «,,, is some function of the Casimir operators, implies
that

(hhyhy] ® [20] =

DT = (4.8)

a,, (P, P;)=0, m=01l,..d—1 (4.9)
From the above Eq. (4.8} is equivalent to the following sys-

tem of d equations in the d unknowns a,,,,m = 0,1,....d — 1:
d—1
Z L2 (¢h"'r¢d)
m=0
X (g g | Ty, — 2hyg) = 0,
i=1,..4d, (4.10)

where ¢,,...,4, are the eigenvalues of @,,...
ing to the IR [A A, A ].

The matrix elements appearing on the left-hand side of
Eq. (4.10) assume a very simple form because both bra and
ket are of highest weight. Starting from the relation

(hl"'hi"'hdng';n)lhl"'hi - 2"'hd)

(hhhd

we note that on the nght-hand side the terms with j <  disap-
pear because €; gives zero when acting on the bra, while
those with > / can be transformed into

2 AT Ne,

'Exi

,®, correspond-

E G, Tim- ”}hl---h,. - 2---h,,), (4.11)

+ (€T '] lhl---hi - 2---hd), (4.12)
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where €;; gives zero when acting on the ket. After a straight-
forward calculation, we get the relation

{(hyh,- hle("')|h,---h,- —2hy)
= (kl'"hi'"hd](@ii +d-—1i T(m- ”Vl wh; — 2+-hy),

(4.13}
from which
(hyooehyoohg [T Byoh; — 240hy)
= A "hwhy kg @l by — 2-4hy), 4.14)
where
Ai=h +d—i (4.15)

Taking into account Eq. (4.14) and the fact that
{hyh; kg |G\ hywh; — 2.k ,)#£0, the system of equations
{4.10) becomes

d—1

Y An(Bipa T =0,

m=0
Since 4, >4,> >4, as a consequence of the inequalities
hi»h,»->h,, the determinant of the coefficients @, ,

i=1,..d. (4.16)

1 A4, A2 A9t
1 A, 43 Ag!
D (Al,...,/{d) = . :2 '2 2
LA, AL e g

=H(/11 —lj)

>
is different from zero. The solution of the system (4.16) is
therefore a,, (¢,....,44) =0, m = 0,1,...,d — 1, for any IR
[A,hy-h ). Consequently, Eq. (4.9) is satisfied.
It remains to show that for any k>d, the T} operator is

linearly dependent upon T{", m = 0,1,....d — 1 ie,

(4.17)

d-—1

TH =3 afl@,..0,)Ty", k>d,

iy

(4.18)

m=0

where a!¥’ is some function of the Casimir operators. The
proof of Eq. (4.18), which is quite similar to that of the linear
independence of T\", m =0,1,...,d — 1, is given in Appen-
dix B together with the explicit form of the a'*’ coefficients.

Finally, by combining Egs. (4.5) and (4.18), any irredu-
cible tensor T'[20] can be written in terms of 7™,
m=20,1,..,d—1,as

T, = dil S (@10 @4)(€7a);, (4.19)

where f,, is some function of the ll(d ) Casimir operators.
Other expansions of T;; may be obtained by considering

other bases for the 7[20) tensors Two of them are worth

mentioning. The first one uses as basis the set of d operators

@ €");,, m=01,..d-1, (4.20)

where € is the transpose of €. In a way quite similar to the
proof of Eq. (4.19), it can be shown that any irreducible ten-
sor T[20] may be written as

d—1 ~ ~ -
= 3 (@€, g.(Py,... D), (4.21)
m=0
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where g,,, is some function of the operators

z @izi, @:i,i, '"@i,ik ’

which are known® to form a possible choice for the 1(d }
Casimir operators. In the derivation of Eq. (4.21}, use is
made of the following equations:

(B + 2ehg (@ G, [y by )

= A h by 4 2ehylal B yehy i)
and

Ai=h —i+1, (4.24)
which are the counterparts of Eqs. (4.14) and (4.15), respec-
tively.

The second alternative expansion for T;; uses as basis
the set of d operators

[¢m+ 1 )a; ]9 m= O,l,...,d - 1, (425)

already considered in Ref. 10. This is briefly discussed in
Appendix C and will not be used in the following sections for
reasons detailed in the same appendix.

We can now proceed to the boson representations of
F/.(2d,R ), beginning in the next section with Dyson repre-
sentation.

&, =trGk= k=1,.,d, (422

(4.23)

5. DYSON REPRESENTATION OF .% 1. (24, A)

The simplest way to explicitly map the functional Hil-
bert spaces # . and & onto one another consists in equating
the complex variables and differential operators defined in
one space with the corresponding ones defined in the other
space, i.e.,

w=_¢,

A=y.

From Eqgs. (2.12) and (3.25), it is clear that such a procedure
does preserve the commutation relations. However, it vio-
lates Hermiticity since y; is the Hermitian conjugate of E,, in
% where as {A[WA + (n — d — 1)I]}; (instead of 4;) is the
Hermitian conjugate of w;; in 5, as it can be seen from Eq.
(2.11).

(5.1)

Let us perform the transformation (5.1) followed by the
replacement
g_’at ’
(5.2)
X—a,
on the representation (2.11) of the .#4_(2d,R ) generators in

% .. We obtain the following boson representation of
Fpo(2d,R):

D" =a', (5.3a)
D¢ — a6+ (n —d — I} = [€ + nl]q, (5.3b)
g = ¢ + (n/2)l, €° =6, (5.3¢)

which is nothing else than the finite non-Hermitian Dyson'?
expansion. It can be easily checked that the right-hand sides
of Egs. (5.3a), (5.3b), and (5.3c) do indeed satisfy the commu-
tation relations (2.9) of the ¥ 4. (2d,R ) generators, but not
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their Hermiticity properties, given in Eq. (2.8), since the con-
dition (Z°")' = &° is not preserved.

In the present section, we have established through the
use of Egs. (5.1) and (5.2) that the Barut representation of
% 4.(2d,R ) is essentially equivalent to its Dyson representa-
tion. By restoring the Hermiticity properties of the
% 4.(2d,R ) generators, we can now go from the Dyson re-
presentation to the HP one. For such a purpose, we need to
consider a more complicated mapping of # onto %, than
that defined in Eq. (5.1). We proceed to study it in detail in
the next section.

6. HOLSTEIN-PRIMAKOFF REPRESENTATION OF
F4.(20,A)

Since the mapping &—w, X—A preserves the commuta-
tion relations, it is a canonical transformation. There exists
therefore an operator U such that

w=UEU"", (6.1a)

A=UyU~L (6.1b)
Let us impose the two following conditions on the operator
U: (i) Umaps U(d )onto % . (d ), sothat Eq. (3.28) is satisfied or
in other words

wa = Ex; (6.2)
(ii) U preserves the Hermiticity properties, so that

w' = A[wA + (n —d — 1)}, (6.3)
whenever

& =x (6.4)

Consequenty U is not a unitary operator.
Whenintroducing Eq. (6.1)into Eq. (6.2), we obtain that
U must fulfill the following condition:

UEXU ' =Tx. (6.5)
It must therefore commute with the representation in % of
all the generators € ; of 11(d ). Consequently it must be a func-
tion

U=U(D,,.,D,) (6.6)

of the 1l{d ) Casimir operators @, {or more exactly of their
representationin % that we denote by the same symbol). We
shall assume that this function is real so that Uis a Hermitian
operator, i.e.,

U=U",. (6.7)

Actually we shall show hereafter by explicitly constructing
U that such an assumption is consistent with the conditions
(6.2) and (6.3).

It now remains to combine Eq. (6.1) with Eq. (6.3). By
taking Eqgs. (6.2}, (6.4), (6.5), and (6.7) into account, we obtain

U-'xU=Ux[Ex +{n —d — 1)[JU ~} (6.8)
or

U~xU?=x[Ex + (n —d — 1)I]. (6.9)

Alternatively we may consider the Hermitian conjugate of
Eq. (6.9), which can be written as

U%U 2 =[Ex+(n—d— 1. (6.10)
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It is obvious that Eq. (6.10) does not entirely determine the
function U (®,,...,®,): In the equation U ? occurs at the same
times as U 2 so that it will be determined up to a constant
factor; moreover, as the equation involves U? instead of U,
the latter will be determined up to a sign factor. We shall take
advantage of this freedom hereafter so as to fix the normali-
zation of U in a convenient way.

Before looking for the explicit expression of U, let us
first find how the representation in % of the ¥4 _(2d,R )
generators is transformed under the canonical transforma-
tion (6.1). From Egs. (2.11), (6.1a)}, (6.2}, and (6.8), we obtain
the following relations:

gcf — UE U- l,

g =U"'\U, (6.11)
and

=% +(n/2L, € =0y

<" and 2° may therefore be obtained from & and x by
acting with U and U ', respectively.

When we carry out the replacement (5.2) in Eq. (6.11),
we obtain the following boson representation of .# 4. (2d,R ):

gt =UatUu-, (6.12a)
9° =U~'av, (6.12b)
E =€+ /Y, €°=6C=a'q, (6.12¢)

which is nothing else than the Hermitian HP® representa-
tion. In Eq. (6.12), Uis a function of the l1(d ) Casimir opera-
tors satisfying the condition

U%'U2=[6+(n—d— 1a’. (6.13)
Let us now turn to the determination of the operator U/

explicit form. From (6.6) it follows that U is diagonal in the
basis

hohyhy )
(h)
and that its eigenvalues only depend upon the 11(d } IR labels:
hlhz'"hd) hlhz"'hd)
= u(h,h,,...,.h . 6.14
)= k)| (6.14

Both sides of Eq. (6.13) are irreducible tensors T'[20] with
respect to U{d ). By taking the matrix element of their i com-
ponent between the bra (4,4, ---h, | and the ket

|hy-h; — 2-+h,) and using Eqs. (4.14) and (4.15), we obtain
the following recursion relation for u(h,,A,,...,h,):

6 Py (4Bt — 2,0y )]

=Aitn—d—1=h+n—i—1 (6.15)
Its solution can be written as
d h . 1
u(hlth)v.-,hd)=[ H zh;/Zr(anl-i-—-)
i=1
—i ~1)1/2
% [r(£;—+l)] ] . (6.16)

if we choose u(h,h,,...,h ;) to be positive and u(0,0,...,0) to be
equal to 1 (so that the vacuum state is left invariant by the
operator U). By expressing 4,,4,,...,4, in terms of
é1,¢2,...,44, we can in principle convert u into a function of
the ¢,’s and then replace the latter by the corresponding
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operators @; so as to obtain the explicit form of the operator
U.

Equation (6.12} does not correspond to the usual form
of the HP representation,” which involves either an expan-
sion into boson operators or the square root of some boson
operator. Let us now proceed to derive such equivalent ex-
pressions. From Eq. (4.19) 2" may be written as a linear
combination of the operators 6€"a’, m = 0,1,....d — 1,

d—1
D =S %p(@), P, )6’

m=20

(6.17a)

The coefficients x,, (@,,...,®,) of this linear combination
must satisfy the equation

d—1
Sy X (P ®P,)6a" = Ua' U™,
m=0
from which we obtain the following system of linear equa-
tions:

(6.18)

d—1

2 xm (¢l""’¢d)/l 'm = (A': + n~— d - 1)”2, i= 1,...,d,

m=20

(6.19)

by taking matrix elements between hws and using Eqgs.
(4.14), (4.15), and (6.16). The solution of such a system is
given by

|
1 /{1 /1'1""‘1 (ﬂ/|+n—‘d—1)]/2 A']"+l . ﬂ,'li_l
X —[D(,l /i'd”_l 1 /12 /lg"l (&2_{_”_(11__1)1/2 /{;n+1 /{g_l
m — 1yvee . .
1 /{d /{?‘l (Ad+n_d_1)l/2 1314_1 /{Z_l

d

=(-r¥

1

[(/L +n—d—1)"

i=1 Jr <2<t <m

Jareer Jm #

where D (4,,....,A,4) is defined in Eq. (4.17). When we combine
Eq. (6.17a) with the following two equations,

d--1

=Y aC"x, (®,,...P,) (6.17b)
m==0
and
E=C +(n/A, ¢ =C=d'a, (6.17¢)

we obtain the HP representation of .¥4_.(2d,R } as a finite
expansion into boson operators.
An alternative compact form of Eq. (6.17) may be found
by noting that the matrix X, defined by
d--1

X= 3 x,(@,..P,)8", (6.21)
m=0
satisfies the following equation:
X*=C4+n—-d-1L (6.22)

To demonstrate Eq. (6.22), let us start from the relation

Xa' =Ua' U, {6.23)
which results from Eqgs. (6.12a), (6.17a), and (6.21), and let us
multiply it from the left by U and from the right by U ~".
When using Egs. (6.6) and {6.23) the left-hand side is trans-
formed into

UXa' U~ '=XUa"U ' =X%", (6.24)
while the right-hand side is simply given by Eq. (6.13). The
resulting relation can therefore be written as

X' =[€+ (n —d — 1)I]a’. (6.25)

By taking the square of Eq. (6.21), we can write X? as
2d—12

X= Y X, (@, P06

m=0

Since for any positive integer m value, €™ is the sum of a W(d )

(6.26)
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(6.20)

scalar, d ~'(tr 6")l =d ~',,1, and an irreducible tensor
T{10 — 1], € — d ~'(tr@™)I, we can decompose X? into a
scalar

2d —2
d \tr X))l =d ! Y X, (@ Py)P, ], (6.27)
m=0
and a T[10 — 1] tensor
X? —d tr X3I
2d —2
= Y X,(P,..,P,)[€" —d ~{tr €™)]. (6.28)

m=1

From Ref. 21, it is known that only d — 1 independent irre-
ducible 7'[10 — 1] tensors can be constructed from the 1(d )
generators. In Eq. (6.28), the operators [€™ — d ~'](tr €™)I],
m =d,...,2d — 2, can therefore be expressed as linear combi-
nations of [€™ — d ~'(tr@™)I], m = 1,..,d — 1, with coeffi-
cients depending upon the 11(d ) Casimir operators. Conse-
quently, Egs. (6.28) and (6.26), respectively, become

X2 —d ~{tr X3)I
d—1
= S % (P ®,)[6™ — d " (tr €] (6.29)
m=1
and
d—1
X2 = 2 X, (Py..., P, )ET, (6.30)
m=0
where
Zol@y,.., D)
2d —2
=d™'' S X,(®,...0,)P,, —d "
m=0
d—1
X z X (Dys.... P)D,, . (6.31)
m=1
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When one introduces Eq. (6.30) into Eq. (6.25), the lin-
ear independence of the irreducible tensors €"a’,
m =0,1,...,d — 1, proved in Sec. 4, enables one to determine
the values of the X, coefficients. For d > 1, one obtains

Xo=n—d—1,

X =1, (6.32)
X,=0 m=2..4d—1,

while ford =1
=€, +n—d—-1=®,+n—-d—-1 (6.33)

This completes the proof of Eq. (6.22).

As a consequence of Eq. (6.22), X may be represented by
the square root of € + (n — d — 1)I, which must be under-
stood as a compact form for the finite expansion given in Eq.
(6.21). The HP representation of .% 4. (2d,R ) may therefore
be written as

Dt =[6+(n—d— 1))Vt

D =al6 + (n—d— 11",

& =%+ (2, ¢€-=C=a'a.

Instead of starting from an expansion of Z! in terms
of €™a', itis also possible to use Eq. {4.21) in order to expand

2 interms of @ 6™. We then obtain the following alterna-
tive form of Eqgs. (6.17) and (6.34):

(6.34)

d—1

D=5 @&, (.8, =a [ +nl]'?

m=0
d—1 - — .

D=3 yu®,.. 9,67 =€+ nl]'a, (6.35)
m=0

F =+ %I, ¢ =6C=d'a

where the eigenvalues of p,, (®,,...,8,) are given by
d o~
pm=(—1" 3 [(/1,- +ap2 S
i=1 Fi <Jr <ot <Jom
Jiredm #

1 i
X [ A Sy xR | S e § ” (6.36)

Equations (6.17}, (6.34), and (6.35) generalize to any number
of dimensions the results obtained in Refs. 3 and 22-24 for
the one-dimensional case, and in Ref. 25 for the two-dimen-
sional one.

As can be seen in Egs. (6.17), (6.34), and (6.35), the U(v)
group makes its appearance in a highly nonlinear way in the
Z4.(2d,R ) framework. However, when the number of parti-
cles becomes very large, this nonlinear dependence becomes
much simpler. In this case indeed, the term nI becomes
dominant in the square root [€ + (n —d — 1)I]'/? or
[€ + nI]'/?, so that n~'/2 2" and n~'/22° behave as a*
and &, respectively:

n~2gct n;wf ,
(6.37)

g S
When the number of particles is not very large, it is still
possible to express the boson operators, and consequently
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the 1(v) generators, in terms of the generators of the dynami-
cal group %/ (2d,R ) by inverting Eq. (6.34) or (6.35). In
compact form, we obtain

& =[€ +n—d—1""2Z" = DG +nl]"",
(6.38)

da=F[C +n—d— 1" = [E+nl) '2D°,

and

C=a'a=¢", (6.39)

where [€° + (n —d — WI]~"4([%° + nI]~"?) is defined
as the inverse of [€¢ + (n —d — DI]"*([Z° + nI]"/?), for
which an expansion in terms of (¢°)", m =0,1,...,d — 1
[(Z°)", m =0,1,...,.d — 1] could be easily found.

Equation (6.38) can be interpreted in the following way.
Since the first-order Casimir operator of % . (d ) can be consi-
dered as the collective part #7% . of a harmonic oscillator
Hamiltonian in the microscopic model and that of l(d ) as a
v-dimensional harmonic oscillator Hamiltonian 9, inabo-
son macroscopic model (neglecting the zero point energy in
both cases), it follows from Egs. (3.18) and (6.39) that in the
fermion-boson mapping (6.38), #7. is mapped onto 2 9, -
Equation (6.38) then gives the unitary representation in
quantum mechanics of the classical canonical transforma-
tion relating #7%. and .. It generalizes to an arbitrary
number of dimensions the two-dimensional result which was
derived in Ref. 6 starting from the Dzublik’-Zickendraht®

transformation.

7. CONCLUDING REMARKS

In the present paper, we have shown through the study
of the Dyson and HP representations of their dynamical
group that O(n) invariant microscopic collective states in d
dimensions can be described in terms of v = 4 (d + 1)boson
creation and annihilation operators which can be combined
to form the generators of a U{v) group. In three dimensions, a
1(6) group therefore makes its appearance in the O(n} invar-
iant microscopic model, and consequently it is possible to
establish a relationship between the latter and the IBM.

However, as has already been noticed by Vanagas,*® the
microscopic model does not reduce to the IBM because, in
spite of the presence of a U(6) group in both pictures, there
remain some important differences between them. In the
IBM, the U(6) group is a symmetry group, which implies
that the total number of bosons is conserved. In the micro-
scopic model 1(6) is a symmetry group only when the nu-
cleons interact through harmonic oscillator forces as the ca-
nonical transformation relating the oscillator Hamiltonians
of the microscopic model and the boson model enables us to
carry the U(6} symmetry from the latter to the former; such a
procedure is not possible for more general Hamiltonians. In
the microscopic model, the total number of bosons is there-
fore not a good quantum number for an arbitrary interac-
tion.

Moreover, the most general Hamiltonian of the IBM
only contains one- and two-body terms whereas, in the mi-
croscopic model, the collective Hamiltonian is a function of
the ¥ 4. (2d,R ) generators—and therefore of the boson oper-

J. Deenen and C. Quesne 2013



ators—which is not restricted to a low degree polynomial.

More importantly, there is a marked difference between
the microscopic model and the IBM coming from the phys-
ical interpretation of the bosons. In the IBM, they are as-
sumed to represent coupled pairs of nucleons or holes out-
side closed shells so that their number is fixed by that of the
active nucleons. In the microscopic model, the microscopic
structure of the bosons is more complicated and arises from
the consideration of the whole set of 4 nucleons, including
both the active ones and those belonging to the closed shell
core. Their number is not fixed and might even grow to infin-
ity, although for practical purposes one would be restricted
to small values.

The boson expansions considered in the present paper
are exact ones, which means that starting from fermion
states satisfying the Pauli principle, one gets boson images
still satisfying it. It is, however, well known that 4 particle
states invariant under O{n) violate the Pauli principle except
for s-shell nuclei. In the case of other shells, the collective
states belong to the IR (4,4,4;) of O(n) obtained by filling
compactly with the 4 nucleons all the single-particle states
in an oscillator well up to a given level and by considering the
most symmetrical IR [A,4,4,] of U(3) in the last unfilled
level."?*~2° Due to the complementarity of the groups O(x)
and .%4(2d,R ),*° the collective states still belong to a single
IR of the latter. Therefore, their dynamical group is the re-
striction of ¥ 4(2d,R ) to this single IR.

An open question deserving further study is whether
boson representations of the dynamical group can be ob-
tained for an arbitrary IR (4,4,4,) of O{n) by a procedure
similar to the one used in the present paper in the case where
{A,4,45) = (000). An argument in favor of such a generaliza-
tion comes from a recent work by Dobaczewski.*' He
showed that by representing fermion states by functions of
complex variables, it is possible to derive their boson repre-
sentations whenever they form the carrier space of any IR of
any semisimple compact Lie subgroup of SO(2N + 1), where
N is the number of single-fermion states. We use a similar
approach to his in the present paper for the noncompact
% 4(2d,R ) group. The only difference between both proce-
dures comes from the explicit use of coherent states in the
sense of Perelomov>? in the work of Dobaczewski and the
underlying presence of coherent states in the sense of Barut
and Girardello' in the present work (as was explicitly shown
in I in the one-dimensional case). Which type of coherent
states should be used in the case of an arbitrary IR of O(n)
remains to be investigated.

APPENDIX A: PROOF OF EQUATION (4.5)
In this appendix, we wish to prove that any irreducible

1 A, A=tk
1 A Am—t Q%
a¥'=[D(A,..A)] " . F 2 2
1A, Am-to gk
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tensor 7'[20] may be written as a linear combination of the
tensors T, m = 0,1,..., whose coefficients are analytic
functions of the l(d ) Casimir operators &,,...,2,,.

We start by noting that any T'[20] tensor being a rank 2
covariant tensor is a sum of terms, each one of these terms
having a number of creation operators exceeding by one that
of the annihilation ones. Let us restrict ourselves to one such
term containing p + 1 creation and p annihilation operators
and assume that the proposition we wish to demonstrate is
true for all values less than p. The 2p contravariant indices
must be contracted with 2p covariant ones in order to leave
two uncontracted covariant indices, respectively, equal to J
and j. In such a procedure, the order of the creation and
annihilation operators does not matter as their commutation
only introduces lower order terms for which the theorem is
assumed to be true. We may therefore put contracted opera-
tors together. In such a way we obtain chains of indices made
up of cycles: one open cycle beginning with index i and end-
ing with index j, and several closed cycles. As a result, the
term considered gives rise to a product of various factors: (i)
one factor corresponding to the open cycle and containing
g + 1 creation and g annihilation operators (0<g<p),

_'- -_— f—

Z aik,ak,kzﬂczk_""akzu ,k“,a_ltij = ((sqﬁr )ij; (A1)
Ky
(i1) several factors corresponding to the closed cycles and
containing equal numbers of creation and annihilation oper-

ators,
Y Wi Bl Lk, Ak, = Pr (A2)
Kk,
Of course, all these factors satisfy the relationp =g + X r.
The proof of Eq. (4.5) is thus completed by induction over p.

APPENDIX B: PROOF OF EQUATION (4.18)

In this appendix, we wish to show the possibility of find-
ing some functions a'*’ of the 1l{d } Casimir operators such
that

d—1

TH =Y all@,,..0,)TY", k>d. (B1)

lj b
m=0

By taking the matrix element of both sides of Eq. (B1)
between the hws of the IR’s [A,--+A;-+h,;] and
(A -h; — 2-+h,] and using Eq. (4.14), we can transform Eq.
{B1) into the following system of d equations in the d un-
knowns %), m =0,1,....d — 1:

d—1

A{‘: z a$](¢]’--'v¢d i (BZ)

m=0
where ¢,,...,¢, are as before the eigenvalues of @,,...,9P, cor-
responding to the IR [A,A,-h,].
The solution of such a system is given by

Ag
/{d~1
], m=01,..d—1, (B3)
A4
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where D (4,,...,A,) is defined in Eq. (4.17). The right-hand
side of Eq. (B3)is a function of the 4, s or, equivalently, of the
h;’s. By expressing the latter in terms of the ¢,’s, we can in
principle convert ¥ into a function of the ¢, s,
a*)(@,,....0,). As this form is valid for any IR [A,A,-h,] of
11(d ), we get the coefficients a'*)(®,,...,P,) appearing in Eq.
(B1) by respectively replacing ¢,,...,¢4 by @,,...,.P,.
Alternatively, Eq. (4.18) could be proved by a procedure
similar to the one that enables us to go from Eq. (6.26) to Eq.
(6.30). In this method, we express the T'[10 — 1] irreducible
tensor €™ — d ~'(tr €™)I, for m = k>d, in terms of the
d — 1independent ones, corresponding to m = 1,....d — 1.

APPENDIX C: STUDY OF THE SET OF OPERATORS
[ d)m +1 ’é'ri/ ]

In this appendix, we wish to review some properties of
the set of operators [®,, , ,,d};], m =0,1,...,d — 1, where
@,, ., is a l(d) Casimir operator, as defined in Eq. {4.6).

It is obvious from their definition that the operators
[@m + 1,a);] areirreducible tensors 7’ [20] with respect to
11{d ) for any non-negative integer m value. Moreover, we are
going to prove that the first 4 of them, corresponding to
m =0,1,....d — 1, form a basis for T[20] tensors. Since in
Sec. 4 we did show that the basis for 7" [20] tensors is made of
d elements, it is sufficient to prove that the operators
[®... 1,8} ],m =0,1,...,d — 1, arelinearly independent. By
explicitly calculating the commutator, one finds that

[ ai] =2(m + 1§€7a");
+ terms of lower degree. (C1)

m+ 17

The linear independence of the operators (€™a"); therefore
implies that of the operators [®,, . ,,a] ]

Consequently, it is in principle possible to write any
T'[20] tensor as

d—1

Ty= 3 Sil@us®u)[Pns1]], (C2)
where /', is some function of @,,...,®,. Such an expansion
has already been proposed in Ref. 10. However, except for
some low d values, this expansion is not so convenient to use
as those given in Eqs. (4.19) and (4.21), because the counter-
part of Egs. (4.14) and (4.23) in the case of expansion (C2)
assumes a very complicated form due to the complexity of
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The G, van der Waerden invariant is given. It solves the external labeling problem connected with

direct products of irreducible representations of G,.
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I. INTRODUCTION

As the simplest of the exceptional groups, G, holds a
perhaps disproportionate fascination. Among its physical
applications are various tentative elementary particle
schemes' and its use, in connection with the chain SU(7)D-
SO(7)D G, 280(3), in classifying f~shell many-particle
states.”

A practical problem, for any group, is the calculation of
its Wigner coefficients which couple states of three irreduci-
ble representations (IR’s) to a scalar, or equivalently, its
Clebsch—Gordan coefficients which couple states of two
IR’s to give a third.? The coefficients are needed for coupling
states and tensors, and also, in connection with the Wigner—
Eckart theorem, for the calculation of matrix elements of
tensor operators.

In Sec. II we give the general van der Waerden invariant
for G,. It consists of a set of products of powers of a finite
number of elementary couplings. It provides a complete
nonredundant solution of the external labeling problem
which is symmetric in the three IR’s and which makes no
reference to the internal basis states to be used. To calculate
Wigner coefficients, one expands the van der Waerden in-
variant in products of states of the three IR’s, using whatever
basis states are convenient for the problem at hand.

Section III contains some concluding remarks.

Il. THE VAN DER WAERDEN INVARIANT

Long ago van der Waerden* wrote down a general in-
variant in the basis states of three IR’s of SU(2) in the form of
a product of powers of certain “elementary scalars.” Al-
though relatively little used for higher groups,*® it is a text-
book way of obtaining SU(2) Wigner coefficients.’

With the help of Speiser’s® graphical methods it is
straightforward to compute the Clebsch—Gordan series for
the direct product of any two IR’s of G,: the product IR’s
correspond to basis states of the first factor IR, perhaps with
some cancellation due to Weyl reflections. Examinations of
couplings of low-lying IR’s suggests the following 36 ele-

#Supported in part by the Natural Sciences and Engineering Research
Council of Canada and by the Ministére de I’Education du Québec.
®On leave from McGill University, Montreal, Quebec, Canada.
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mentary couplings:
C.,=4,4,, D,=BB,, E=A4,4:4;,

F= BleB:;, G, = BiAjAk1

H,=A?BB,, J,=A/BB,,
K,=A,BA;, L,=BAAB,
M, =B,B}4;,, N=A,B.A,B,A,B, (1)

The notation is such that the product 4 B4 $:B %4 $B%
stands for the coupling (a,,b,;a,,b,;a,,b,), where (a,,b;) are
the representation labels of the ith representation; (10) is the
seven-dimensional and (01) the 14-dimensional fundamental
IR. The subscripts i, j, k in (1) are 1,2,3 in any order. A
coupling (a,,8,;a,,0,;a1,b;} stands for the coupling of the
three IR’s in question to form a scalar, or, equivalently, the
coupling of any two of the IR’s to form the third. The desig-
nation of the couplings (1) as elementary implies that they
constitute an integrity basis for the coupling problem; any
coupling can be written as a product of powers of the elemen-
tary couplings; this conjecture is justified at the end of this
section.

Because of syzygies (polynomial identities) relating the
couplings (1), some products of powers must be eliminated to
avoid multiple counting. According to Racah’s counting of
labels, not more than ten at a time of the elementary cou-
plings may appear with arbitrary exponents in the same pro-
duct when defining general couplings (10 = (r 4+ 3/), where
r = 14 and / = 2 are the order and rank respectively of G,).

The van der Waerden invariants of SU(4)° and SO(5)°
were determined heuristically with the help of Speiser’s cor-
respondence between couplings and basis states. The G,
problem is sufficiently complicated that we were forced to
implement Speiser’s method analytically with the help of
generating functions. We first give the results, and then de-
scribe their justification.

109 types of invariant may be distinguished. Each of the
first 108 is characterized by a product of nonnegative integer
powers of ten of the elementary scalars. Each set of ten in-
cludes the six denoted in (1) by C; and D;. The possible
choices for the other four are
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EK,K.M;, JK,K.M,, EKK,L,
EK,L,M,, GJK.M,,

EFK,L,, EFLM,, FGK,M,,

FG,K,L,, FGLM,,

EFK;M,, FGHM,, FGHM,,

GK;L,M;, G.K,KyLy,

GJ KuMy, GHJM,, GHJIM,. (2)

Each of the 18 groupings in (2) stands for six, obtained by
giving i, j, k the values 1, 2, 3 in any order. The 109th type of
invariantis a product of V (appearing only linearly) and non-
negative integer powers of the eight elementary scalars C,,
D,EF.

Each linearly independent G, coupling is obtained ex-
actly once by giving the exponents of the elementary cou-
plings in each of the 109 terms all nonnegative integer values
(except N which appears at most linearly). Of course, when
some exponents vanish, the same product of powers may be
obtained from different terms of {2}; each such product of
powers of elementary couplings is to be counted only once.
The ten exponents in a product of powers of C; and D, and
the four elementary couplings from a term of (2) provide the
six representation labels and the four “missing” labels; the
“missing” labels may be conveniently taken as the exponents
of the four couplings in one term of (2), or of E and Fin the
term involving N.

Our derivation of the G, couplings makes use of Weyl’s®
characteristic function £, (9,5 ), given explicitly for G, by
Behrends, Dreitlein, Fronsdal, and Lee.! According to Weyl
the character y,, (77, ) is given in terms of the characteristic
by

Xao11:6) = Ean (1,6 )/ Eool1:5 ); (3)

7,6 are dummy variables which carry as exponents the hori-
zontal and vertical components of the weights of the repre-
sentation (a,b ). We shall find it more convenient to use the
variables x = £ ?and y = ¢ *7 instead; the exponents of x and
¥, when positive, are the labels of the IR for which the weight
in question is its highest. For our purposes we need the char-
acteristic generating function, which turns out to be

L ( - I)sty s

EAB(xvy) = Sgo (1 _Ax_\_)(l _Bys)’

4

where (x,,p,) for s from 0 to 11 are (x,y), (v/x,p), p/x,y°/x>),
W/ X2y /x), v/x2y/x%), (1/x,p/x%), (1/x,1/y), (x/9,1/9), (x/
»xX>2 12, (/v X2/, (x2/y,x3/y), and (x,x>/y). When ex-
panded in powers of 4 and B,

Zaslxy) = Zb AB %, (x.p), (5

the characteristic generating function provides the charac-
teristic functions £, as coefficients. Similarly, the character
generator X ,,(x,y) when expanded,

Xaplxy) = Eb‘, A°B Y, (%), (6)

provides, as coefficients, the characters of irreducible repre-
sentations; the character generator for G, has been given by
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the present authors.'® Multiplying X, ; (x,y) by =, 5 (x.y),
we obtain

X 4,8, 548,
= Y AVBYATBYE., (xI)Cobaban, (7)
a,b,a,b,a3b,
where C, , ;. .05, 1S the multiplicity of (a;b,) in the direct

product (a,b,) X (a,b,). In deriving (7) we used Speiser’s

Xa,b, (x’y)gazbz (X,y) = z §a‘b‘ (x’y)ca,b‘azbza‘b_x . (8)
ab

The characteristic &, , (x,y) contains one term in each of
the 12 Weyl sectors of G,; one of them, the only one with
both exponents positive, is x>+ 'y**+ 1, Consequently, the
multiplicity of the representation (a;b,), in a linear combina-
tion of characteristics such as (7), may be obtained by multi-
plying by x =~ 'y =&~ ! and isolating the x°)° term. This
can be done for all (a;b,) simultaneously by multiplying (7)
byx 'y [(1 — A;3/x)(1 — B,/y)]~ " and picking out the x%°
part. This is equivalent to multiplying (7) by x ~ 'y~ !, keeping
the part whose expansion contains only nonnegative powers
of x and y, and then setting x = 4, and y = B,. The projec-
tion of nonnegative powers of x and y is simplified by the
procedure described in Ref. 11. The result is the G, Clebsch—

Gordan generating function
G (A l’BI’AZ’BZ’AhBS)

= Y AUBYAPBYATBYC,,apup, )

a,b,ab.a,b,

which gives the multiplicities C, ,, , 4, », Of all G, couplings.
Because of its complexity (it contains 108 terms) we refrain
from reproducing the generating function here. Each term
has ten denominator factors of the form 1 — X, where the X
are distinct elementary couplings which include C,, C,, C;,
D,, D,, D,, the other four being one of the 108 sets given in
(2). The terms include one with numerator unity, 26 whose
numerator is a single elementary coupling, 55 whose numer-
ator is a product of two elementary couplings, 25 with a
product of three elementary couplings as numerators, and
one with a product of four. The numerator factors are always
chosen from the couplings in the denominator of the same
term (not including C; and D,), except for one term which
has N as its numerator; when the denominator factors are
expanded to obtain higher couplings, NV should be interpret-
ed as EF when multiplied by denominator couplings other
than E, F, C,, D,.

We have verified that the products of elementary cou-
plings obtained by expanding the terms of the generating
function correspond to the 108 types given by (2), to the
special products involving ¥, and to no others.

lll. CONCLUDING REMARKS

The van der Waerden invariant described in Sec. II not
only enumerates all G, couplings, but solves the associated
labeling problem. To construct the actual couplings, and in
particular, to determine Wigner or Clebsch—Gordan coeffi-
cients, more computation is required. First one needs to de-
termine each of the 11 distinct types of scalar defined by (1);
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that task is relatively simple. More difficult is the projection
of the stretched part (representation labels additive) in all IR
labels of an allowed product of powers of elementary scalars,
and its expansion in products of appropriate basis states of

the three IR’s involved; such a computation for SO(5) is car-
ried out in Ref. 6.

Other resolutions of the labeling problem that implied
by the “compatibility rules” (2) are possible. For each syzygy
{polynomial identity relating elementary couplings) one
must select one term and eliminate products containing it in
order to avoid double counting. The choice of the term to be
eliminated is somewhat arbitrary; a different choice leads to
a different coupling scheme. The couplings arising from one
scheme are linear combinations of those arising from an-
other. We imposed on our solutions the restrictions that C,
and D; not figure in the term of a syzygy to be eliminated and
that the solution be symmetric under interchange of the re-
presentations 1,2,3. We give an example of a different solu-
tion which respects these conditions. There is a syzygy
which involves the terms MM, and H ;. Our solution eli-
minates M; M. Consider two terms in the generating func-
tion which are identical except for the factors
[(1—M,)1—H,)] ' and M, [(1 — M, )}(1 — H,)}”". Com-
bining the two terms and replacing M, M, by H}, one gets
(1+H, + H})[(1 — M,)(1 —M;)]~". H} is now eliminat-
ed, and M; and M), are compatible; the number of terms is
reduced at the expense of complicating the numerators.

The composite states corresponding to our solution of
the external labeling prablem, although complete and nonre-
dundant, are not in general mutually orthogonal. To abtain
orthonormal coupled states, one may use a Schmidt proce-
dure or, alternatively, diagonalize some Hermitian operator
such as that defined by the metric (overlap) matrix of our
nonorthonormal couplings.

A possible further application for our G, Clebsch~Gor-
dan generating function is in obtaining generating functions
involving coupled G, representations; the SU(3) Clebsch~
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Gordan generating function was used in that way in Ref. 12
and that for SU(2) in Ref. 13.

By isolating the part of the van der Waerden invariant
in which the three coupled IR’s are the same, and taking note
of the exchange symmetries of the elementary couplings, one
can quite easily determine the scalar part of the symmetric,
antisymmetric, or mixed-symmetry three-box plethysm
based on any IR of G,. The complete content of two-box
plethysms is determined similarly.
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Cartan-Gram determinants for the simple Lie groups
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The Cartan—Gram determinants for the simple root systems are evaluated for the simple Lie
groups 4,, B,,, C,, D,, and E, (k = 6,7,8). The determinants satisfy a linear recursion relation
which turns out to be the same for all these groups. For the E, family, the Cartan~-Gram
determinant contains an explicit factor of (9 — n) which vanishes for » = 9 and is negative for
n>9. This gives a simple explanation why the E, family terminates at E;. The Cartan-Gram
determinant affords a systematic explanation for the nonexistence of the forbidden Dynkin

diagrams.

PACS numbers: 02.20.Rt, 02.20.Sv

I. INTRODUCTION

The Cartan—Killing classification of simple Lie groups

into the classical groups [namely, the unitary 4,

= SU(n + 1), orthogonal B, = SO(2n + 1), D, = SO(2n),
and symplectic Sp(2#)] and the five exceptional ones
(G, F ,E, E,, and E,) is well known.'~® We shall speak of Lie
groups and Lie algebras interchangeably.

The purpose of this note is to advocate the use of the
Gram determinant (or, apart from a scale, the determinant
of the Cartan matrices'>) as an unambiguous clean test for
the linear independence of the set of simple root vectors. For
the allowed Dynkin diagrams, the Cartan—-Gram determi-
nants are positive definite. For the forbidden configurations,
the determinants are negative or zero. The Cartan-Gram
determinants are explicitly evaluated for the simple Lie
groups4,, B,,C,, D,, and E,. The answers are remarkably
simple. The determinants are found to satisfy the same re-
cursion relation for all these groups. For the E, family, the
Cartan-Gram determinant contains an explicit factor of
{9 — n), which vanishes for » = 9 and is negative for n > 9.
This gives a simple explanation why the E, family termin-
ates at Ej.

For the basic notion and terminology, the reader is re-
ferred to the literature.' The following two paragraphs
provide a minimal setting.

An arbitrary Lie group is decomposable into a semi-
simple one and a solvable one. A semi-simple group is de-
composable into simple groups. The r parameters of a simple
Lie group of rank # can be split into n commuting (i.e., simul-
taneously diagonalizable) operators H, (i = 1,...,n}, i{r — n)
raising operators E, and i(r — n) lowering operators E _
such that, among other things, the composition {commuta-
tor) relation reads

[Hi’Ea] =a,E,. (1)

This says that the commutator between H; and E_, cor-
responds to an eigenvalue problem in the adjoint representa-
tion. The eigenvalues @, (i = 1,...,n) are called components of
a root vector a in a n-dimensional Euclidean space. By judi-
cious choice, the root space can be spanned by a set of basis
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vectors (not necessarily orthogonal) called the simple roots.
The set of Dynkin diagrams correspond to all the admissible
simple root vectors that satisfy the following three require-
ments:

(a) angular restriction between two vectors: 8 = /2,
27/3, 3m/4, 57/6,

(b) relative length restriction: —, 1:v2:v3, and

{c} linear independence.

Il. THE CARTAN DETERMINANT; THE GRAM
DETERMINANT

For a rank »n Lie group, the Cartan matrix isa nxXn
matrix whose elements 4, is defined as

_ 2(anaj) )

1;/' - »
(aj,aj)

where o, denotes the /ith simple root and {(a;, @) is the inner
product. The Cartan matrices for simple Lie groups are list-
ed in the literature.>*>

On the other hand, the Gram matrix for a set of n vec-
tors is defined as

G, = (@) 3)

5

It is well known that the Gram determinant’ (a) is posi-
tive for a set of linearly independent real Euclidean vectors,
and (bj vanishes if and only if the set of vectors is linearly
dependent.

The determinant of the Cartan matrix will be called the
Cartan determinant here. It is simply proportional to the
Gram determinant, the proportionality constant depends on
the normalization of the simple roots.

With the known simple root system for the simple Lie
groups, their Cartan determinants A =det 4,; of (2) and the
Gram determinants g=det G, of (3) can be easily evaluated.
With the nesting structure such that the determinant of the
next subgroup corresponds to the first principal minor, we
have for the n X n determinants:
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2 -1
— 1 2
0 -1
An(An)—
g.4,)=2""n+1),
2 —1
—1 2
0 1
4,B,) =
gn(Bn):22 B ”1
2 -1
— 1 2
0 -1
Antcn):
and
gn(cn):‘z\n'

Note that the matrices for C, and B, are the transpose

of each other.

2
—1
0

An(Dn) =
gn(Dn) = 227 “’
2
—1

An(En):

|Es=A,4,Es=Ds], g,(E,)=2""(9 —n).

A simple recursion relation is seen to hold for all these

cases. We have

—1
2
—1

An :2AnAl —An—Z’

8n :gnfl

2020

1
48n_2-

The (9 — n) factor of the Cartan—-Gram determinant for

0
-1
2

-1

—1

0
—1
2

—1
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(8b)

(9a)
(9b)

=n+1, (4a)
2
(4b)
=2, (5a)
2
(5b)
=2, (6a)
2
(6b)
=4, (7a)
0
2
(7v)
—1 0 0| =9 —n, (8a)
—1 0 0
2 -1 0
—1 2 =1
0 -1 2

1
the E, family gives a simple explanation why the family does
not extend beyond E,.

We state without elaboration that the Cartan—-Gram de-
terminant affords a clean systematic test for the admissibility
of a simple root system.

'E. B. Dynkin, Usp. Mat. Nauk. 2, No. 4 (20), 59 (1947); Transl. Am. Math.
Soc. 9, 328 (1962).
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A closed formula for the product of irreducible representations of SU (3)
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We determine a closed formula in terms of p, ¢, 7, and s for the decomposition of the product
[7, ] [r, 5] of finite-dimensional irreducible representations of SU (3). We also determine in terms
of p, g, , s, m, and n necessary and sufficient conditions that a term [m, n] appears in this

decomposition and its multiplicity.

PACS numbers: 02.20.Qs, 02.30.Lt

1. INTRODUCTION

Although there are varicus algorithms for determining
the decomposition of the tensor products of representations
of SU (3) the author is unaware of any closed formula for this.
There are obvious advantages of a closed formula in deter-
mining structure and detecting patterns for generalization to
the more intractable problem for SU (n).

The formula developed here is a triple summation
which includes repeated terms; the multiplicity of these
terms is determined separately. The proofs, mostly by induc-
tion, are themselves unrevealing and tedious.

2. NOTATION AND PRELIMINARY RESULTS

Let 4, denote the Lie algebra of infinitesimal operators
associated with SU(3). Let e; denote the 3 X3 matrix with
entry 1 in the (i, jjth position and zero elsewhere. The opera-
tors

T,=e, T_=e, U,=e3 U =e,,

Ve=eys V_o=e T,.=e,—ep U =ep—ey

form a basis of 4,. Here T, U, , V', are the usual spin
operators but 7, = 2T, U, = 2Uj in the notation of Ga-

siorowicz.! T, and U, will thus have integer eigenvalues.
The commutator relations are then

(T..T_ =T, [T.T,]=+2T.,
[U+,U4]= o

[U,U.]=+20,, [V, V.1=U +T.,
[T..U,]=TFU,

[T, V.]1=xV,, [U.T.]=FT,,

[U. ]:i +

0—[ ]Z[T Usl=1[T: Ve ]=[VU.. Ve )
Vs ]= [V T l=FV., [Ty, V5]

=FU,

Let M be a finite-dimensional representation space for 4, (a
left A,-module). For arbitrary Z,€A4,, veM, the product [Z,,
Z,}actsonvbytherule[Z,, Z,lv = Z,(Z,v}) — Z,(Z,v) which
we use more frequently in the form

Z(Zw)=1Z,Z,)]v + Z,(Z v) (2.1)
M has a basis of common eigenvectors of 7, and U, ; the
associated eigenvalues /, m respectively are integers. If M is
irreducible it is generated over A, by a maximal vector v
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unique up to scalar multiplication'; v* is distinguished by
the property that it is annihilated by T, and U, (and there-
foreby V, = [T, U_]). The eigenvalues r,sof T, and U,
respectively, associated with v are non-negative. Since two
irreducible 4,-modules are isomorphic if and only if they
have the same ordered pairs of eigenvalues associated with
their maximal vectors, the ordered pairs [7, s] may be used to
denote the distinct irreducible 4,-modules. v™ is annihilated
by 7 + 1 successive applications of 7_and s + 1 of U_. The
dimension of [r, 5] is

ir+ Dis + 1)(r+ 5+ 2). 2.2)
The number of irreducible components of M will equal the
dimension of the subspace W of M annihilated by both T,
and U ; the components of M may be determined by choos-
ing a basis of W consisting of common eigenvectors of 7. and
U. and finding the eigenvalue pairs corresponding to each
element of this basis.

Let w € [r, 5] be an arbitrary common eigenvector of T,
and U, with eigenvalues /, m, respectively. Then T, w,
U, w,and V_ w will also be eigenvectors of T, and U,
which, if not the zero vector, will have eigenvalue pairs

(+2,mF1),

respectively.

The simplest 4,-module is [0;0] which has a dimension
equal to 1 and is annihilated by 4,. Next simplest are [1,0]
and [0,1] each of dimension 3. Let u,, &, be maximal vectors
of [1,0] and [0,1], respectively. Then [1,0] has as basis {«, 7 _
u, U_ T_ u} while U_u = 0. Similarly [0,1] has as basis {#,
U_a, T_U_u}land T_u=0.

Let M, N be A,-modules, veM, weN. The action of 4, on
the Kronecker product M ® N is given by

Zvow)=2Zveow +veZw, ZeA4,. (2.4)
To simplify notation we write [r, s] [p, q] for [, s] ® [p, gl.

CF1Lmx2), (£1,mz1), (2.3)

3. GENERATING FORMULAS

In this section we obtain formulas {3.2) and {3.3) for
[r, 5] [1,0} and [, s][0,1] which may be used to generate the
formula for [, s][p, q].

Proposition I: Let v, u be maximal vectors of [r, s} and

[1,0], respectively. Then
w,=veou, w,=7T _veu—rel_u,

and
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wy=U_veTlT_u—sveU_T_u+ —3 U Tveu

r+s+1

_ s+t
r+s+1

if not zero, are maximal vectors in [r, 5] [1,0].

T U_veu,

Proof: Apply T, and U, to each vector. Since T, anni-
hilatesvand u, T, w, =T, veu +v® T, u=0. Similarly
U, w, = 0. So w, is a maximal vector. Also,

T,w,=T, T veu+T _veT u—rT veTl_u
- T, T _u=[T,T Jveu+T_T. v
ou—rve[T, T lJu+veT_T, uj

[by (2.1) and maximality of » and v]

=T veu—rweT,u
=rweu—reou=0.

Similarly,

U .w,=U,T veu—-T velU,u—rU_v
T _u—relU,.T_u
=[U,T lveu—re[U,T_ Ju=0

since [U,,T_] = 0. So w, is a maximal vector.
Further, omitting some zero terms,

T,w,=T U veT_ u+U_veT T u—sv

s
e T.U T u+ ——T U_T veu
* r+s-+1 *
-2t v 7 U veu
r+s+1

Reducing this term by term using (2.3), (2.4), and the com-
mutator relations,

T .U v=I[T,U_Jv=0,

T.T_ u=[T,T Ju=T,u=u,

T.U T u=[T U T _u+U_T,. T u
=U_ [T, T lu=U_Tu=U_u=0,

T.U.T v=U_Tuv=rU_v,

T, T U v=[T, T U v+T_T . U_v
=T.U v+ T_[T, U Jo+T_U_T,v
=({r+ 1)U_o.

Thus,

T.wy=U_veou+ rU_veu

r+s+1
_ s+l
r+s+1
Uiw,=U U_veT u+U_veU,.T_u—sv

(r+ 1) U_veu=0,

s
U, U T u+ —U, U_T_ vou
+ r+s+1 *
5+l yr U vew
r+s+1
Here

U U v=[U_U_Jlvo=U.wv=s,
U, T u=[U_T Ju=0,

2023 J. Math. Phys., Vol. 23, No. 11, November 1982

U U T u=[U, U T _u+U_U,.T_u
=UT u+U_[U, T lu=T_u,

U, U T v=+1T_vU.T_U._v
=[U,,T_Ww+T_U,U_v
=T_[U, U lv=T_Uyv=sT_v.

So
U,wy=sv8T_u—sveT_u
+ —S—-—(s—f— W _veu— —s—+1—sT_v®u,
r+s+1 r+s+1
whence w; is also a maximal vector. Q.E.D.

Propositon 2:
(i) [, 5] [0,0] = [, s]. (3.1)
(ii) If r£0, s#0,

[r,sl1,0]=[r+ L,s]+[r—1,s+ 1]+ [rns—1]. (3.23)
If r£0,

[7,0][1,0] = [r + 1,0] + [ — L,1]. (3.2b)
If s#£0,

[0, s)(1,0] = [1,s] + [0, s — 1]. (3.2¢)

Proof:

(i) Trivially if {2} is a basis of [0,0] the mappingv® u —
v, velr, s] is isomorphism, giving the result.

(ii) If s = 0, then U_v = 0 and together these give
w; =0
Ifr=0then 7_v =0andsow, = 0. Applying 7. and U, to
w,, w, and w; when these are nonzero, using (2.3}, shows that
they are common eigenvectors with eigenvalue pairs
(r+1,s),(r— 1,5+ 1), and (r, s — 1), respectively. Thus,
when the corresponding w; is nonzero, [r + 1, 5],
[r —1,s + 1], and [r, s — 1] are components of [r, s][1,0]. A
check on dimensions using (2.2) show that these are the only
components in each case.

The linear function 8:4, — 4, whichmaps T, - U,
U, T, and¥V, — — ¥V, isanautomorphism. This can
be checked using the commutator relations. Given an A,-
module M the conjugate module M is defined by taking the
same underlying vector space and defining Z.v = 6 (Z v,
ZeA,, veM. Since the role of U, and T, are interchanged,
[r,s] = [s,r]. Also M& N = M@ N (where M and N are
A,-modules). Applying this to Proposition 2(ii) gives an im-
mediate proof of Proposition 3.

Proposition 3: If r, 0,

(nslf0]=[rs+1]+[r+1,s—1]+[r—1,5. (3.3a)
If r#£0,

[.0] [0,1] = [~,1] + [r — 1,0], (3.3b)
If s£0,

[0, 5][0,1]1 = [0, s + 1] + [1,s — 1], (3.3¢)

Note: To facilitate notation we will use pairs [, s] with
either r or s negative. Such pairs will by definition be zero
and termed redundant. Using such notation, (3.2a) includes
(3.2b) and (3.2c) while (3.3a) includes (3.3b) and (3.3c). How-
ever, products with such symbols will not be permitted as the
formulas (3.2) and (3.3) do not hold when 7 or s is negative.
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4. PRODUCT FORMULAS

A formula for [r, s][p, ¢] is obtained in Proposition 6.
First, however, it is nesessary to treat the cases where
s = g = 0{Proposition 4} and where g = O (Proposition 5). In
all cases the proof is by induction involving (somewhat te-

dious) combinations of summations.
g h
To simplify notaion, '
i=ef
where i ranges from max {e, f} tomin {g, & }.
Proposition 4:

is used to denote the sum

7,

h)

[,0][p,0] = [ r+p — 25i] (4.1)

HM

i

Proof: We use induction on the minimum of p and r (say
p). Equation (3.1) gives the result when p = 0. The proof giv-
en for the inductive step involves products [0} [p — 3,0].
To avoid products of redundant terms (see Note) it is neces-
sary to consider the cases p = 1 and p = 2 separately. When
p = 1 the result is given by (3.2). For p = 2, since
[2,0] = [1,0][1,0] — [0,1] from {3.2b) we have (since 7>2)

[,0][2,0] = [~,0]{[1,0][1,0] — [0,1]}
= {[r + 1,0] + [r — 1,1]}[1,0] —
=[r+2,0] + [r,1]+ [r—2.2],
given the result for p = 2. For p > 2, again using (3.2) and the
induction hypothesis, we have
[,0l[p,0] = [~0]{[p — 1,0][1,0] —
= [r90]{[p - 1,0][1,0] -

[#,0]{0,1]

[P’ 2’1]}
[p —2,0][0,1] + [p — 3,01}

_ [1,o]pi][r 4 p—2i— 1]

i=0
p—2
— (011 [r+p—2i—2i]
i=0
p—3

+ > Ir

i=0

p—1
= S{lr+p—2il+r+p—2i—2i+1]

i=0

Flr4p—2i—Li—1])

p—2
— S ilr+p—=2i—2i+1]+[r+p—2i—-1Li—1]

i=0
+ [r+p—2i— 3,1}
p—3

+ S [r+p—2i—3,]

i=0

= [pi[r+p—2i,i]] +r—ppl+[r—p+1p—2]

i=0

= S [r+p—2il.
=0 Q.E.D.

Proposition 5:

[r,s]1[p,0] = f p‘ﬂzj’[r +p—j—2s—j+il.(42)

Proof: We use induction on s.
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Case s = 0: The result is trivially true for s = 0 since
then (4.2) reduces to (4.1).

Case s = 1: As in Proposition 4, we must treat the case
s = 1 separately. For s = 1 and r = Q it reduces to (3.3b); for
r>1[r,1] = [r,0][0,1] — [r — 1,0] so by hypothesis

[p,01[,1] = [p,0{[r,0][0.1] — [r — 1,0]}

pr—1
' [r+p — 20,i][0,1] — > lr+p—2—14]

=0

bl
N

it

il

[r+p—2u+1]+ 2 r+p—2i+1,i—1]

i=0

T I I

-+ Z[r+p 200+ 1] — z [r+p—2i— 1]
i=0 i=0
The last two sums combine to give [p — r — 1,7] whenever
p>rand zero otherwise. Since the term is redundant for

p = r, it occurs only when p>r + 1. It may included in the
second sum with i = r + 1 giving zp‘w ] [r +p—2ii + 1],
since the term for i = O is also reduniga]nt. Replacing the
dummy variable / by i + 1 this becomes zp o

i=0

[r+p— 2/ — 1,i} giving

pr
[2.01[r1) = 3 [r+p—2ii + 1]
i=0
p— Lr

+ 3 [r+p—2—1il,

i=0
which agrees with (4.2) for s = 1.

Case s> 1: Forr>1,s> 1 using (3.3a) and the induction
hypothesis,

{r,slip,0) = {[r,s — 1][0,1] — [r + 1,5 — 2]
—[r—1,s—1}i[p,0]

="§’

&

[rtp—j—2is—j+i—1][01]

i=0

—[r+1,5s—=2][p,0]
—[r—=1,5—-1]p,0]

s Lp
:Z 2, {r+p—Jj—2i,s—j+1i]

1' =

+lr+p—j—2i+1s—j+i-2]

+r+p—j—2i—1,s—j+i—1]}

s=2p p—jr+1
- > ¥ lr+p—j—2i+ls—j+i—2]

j=0 i=0

s—lp p—jir—1
-3 N lr+p—j—2i—1,s—j+i-1],

j=0 i=0
(4.3)

When 7 = 0, s> 1, we obtain a similar formula but lacking
the fifth double summation.

Combining the second and fourth double summations
gives
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[’__,"P p—jr s—2p p—f,r+1}
j;() i;o i=0 i=0
r+p—Jj—2i+1,s—j+i—2]
s—2p(p—jr p—jr+1

_ ][r+p—j—2i+1,s-j+f—2]

=0 i=Q

+ifp>s—1, ¥

i=0

|

[r+p—s—242,i— 1]}.

(4.4)
p—ir  p—jr+l
[ i;o i;O
p —Jj>r+ 1, thatis j<p — r — 1; then the contribution will
havei=r+ landbe —[p—j—r—1,5s—j+r—1]. The
sum of p>s — 1 contains redundant terms (for i = 0 and in
particular for p = s — 1) and simplifies to

} will only contribute terms when

p—s+ 1r

{if p>S, Z

i=1

[r+p—s—2i4+2,i— 1]]
which on replacing / by / + 1 gives

p—sr—1
[ifp)s, Z [r+p——s—2i,t']].

i=0

So (4.4) becomes

s—2p—r—1
- S lp—je-r—lLs—j4+r—1]
j=0
p—sr—1
wlitpzs” 3 tr+p—s—2ia) 4.5
i=0

Similarly combining the third and fifth double summations
of (4.3) for r>1, gives

[S—zlp szpﬂi—zl-f’ P*j,z’—ll

j=0 i=0 j=0 i=0
r+p—j—2i—1,5s—j+i—1]
s—lp—r—1
= E [p——r—]——l,s——j+r—l]

j=0

This is also obtained in the case r = 0 (when the fifth double
summation is absent) by putting 7 = 0 in the third double
summation. Combining this with (4.5) yields

{if s<p—r, [p—r—srl]

p—sr—1

+ {if p>s, Z

i=0

[r+p—s—2i,i]}

P —Sr
= [ifp)s, Z [r+p—~s—2i,i]].
i=0

But this is just the extra term together with the condition
under which it will occur, if the range of the first summation
on (4.3) is extended to include j=s.

p—ir
So (4.3) becomes z
=0 i=0
[r+p—j—2i,5s—j+i], which agrees with (4.2).
Q.E.D.
Proposition 6:
gr+s spr+s—k p-—j+kr
[r.s]lpgl=3
k=0 j=o0 i=0j—s+k
(r+p—j—2i+ks+qg+i—j—2k]. (4.6)
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Proof: The result is trivial for r = s = 0 so we consider
the case where 7 + s 0. The proof is by induction on g.

Case g = 0: For g = 0O the result is given by (4.2).

Case g = 1: We must again consider the case g = 1 se-
parately. For ¢ = 1, p = 0 the result follows from (3.3). For
g =1, p>1, apply (3.3b) and (4.2) to obtain

[r’ S] [P,I] = [r’ S]{[p,O][O,l] - [P - 110]}

Sp p—ir

=> 3 lr+p—j—2is—j+i][01]
j=0i=0
S,p;] p_j_l,r . . . .
- 2 Y [r+p—j—2—1s—j+i]
[¢] i=0
?

sp g
=3 Z [r+p—j—2,s—j+i+1]
Jj=0i=0

sp p—jr

z S lr+p—j—2+1s—j+i-1]
=0i=0

P —ir

Z [r+p—j—2i—1,5s—j+1i]
i=0
L p—

j—1Lr

S Ir+p—j—2i—1,s—j+il.
j=0 i=0
(4.7)

2

The last two double summations combine to give

ssp— 1 {p—jr p—j—1r
[z S ][r+p—j—2i—1,s—j+i]
i=0
+ {if s>p, [r— 1,5 —p]}. (4.8)

For r =0ors<p — r — 1, this is zero, since r<p — j — 1.
Otherwise it equals

sp -1
Y [r—=p+j—Ls+p—2]
J=0p—r
+ {1fs>P,[r" l,s—p]}
P

= 2

j=0p—r

[r—p+j—1,s+p—2].

Since the term for j = p — r is redundant (whens =p — 7,
this is the only term), (4.8) becomes
5p

[r—p+j—1s+p—2l

Jj=0p—r+1
0, otherwise.
(4.9)
These are exactly the extra terms obtained by allowing the
value of / in the second double sum in (4.7) to range from 0 to
min (r, p —j + 1}. Thus (4.7) becomes

P p—ir

[r,S][PJ]—'Z Z["+p —Jj=2i,s—j+i+1]

.I i=0
j+ Lr

5P
+3 S r4p—j—2i+ls—jri—1]
=0 i=0
’ (4.10)

To see that (4.10) agrees with (4.6) consider the cases 7> 0
and r = O separately. In either case min (r + 5,p) = 1 soin
(4.6), k takes only the values 0 and 1. For 7> 0, min

{s,p,r + s — k) = min(s,p} and (4.6) becomes
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Sp p—r

[rnsllpll= 3 > [r+p—j—2is4+1+i—]]
ji=0 i=0j~—s
J:,p p—Jj+l,r

t2 X

j=0 i=0j—s+1

s+i—j—1].
(4.11)
Here max (0 — s) = 0 and
. 0if j<s
max (0j —s+ 1) = 1ifj=s

Since the term for j = s and / = 0 in the second double sum-
mation in (4.10) is redundant, (4.10) agrees with (4.11) and
hence (4.6) for 7> 0. For r = 0 (4.10) becomes

5P P
Slp—is—j+1+ Y lp~—j+Ls—j—1]
ji=0 j=0

s—1,

s, P
j=0 j=0

on removing the redundant term for j = 5. In this case (4.6)
only has terms for / = 0 and since min (s,p,r + s — k) = min
(p, s — k), (4.6) becomes

5p ps—1
Slp—jis+1-j1+ 3 lp—j+1Ls—j—1l.

j=0 j=0

So again (4.6) and (4.10) agree, proving (4.6) is valid for
g=1

Case g>2: To prove the inductive step (for ¢>2) we use
(3.3a) and the inductive hypothesis to obtain (for p#0)

(7, sllp, g]
=[rsilp,g—-1N01] -+ 1g—-2]-[p—1¢—-1]}

g—Lr+s spr+s—k p—ji+kr
K=0 j=o0 i=0j—s+k
lr+p—j—2i+ks+ g+i—j—2k]
g—1r+s spr+s—k p—j+kr
+ 2
k=0 j=0 i=0j—s+k

[r+p—j—2i+k+1,s+ g+i—j—2k—2]
g—1,r+s spr+s—k p—j+kr

+

K=o0 j=o0 i=o0
[r4p—j~2i+k—1s+ g+i-j—2k—1]

q—2r+s sp+ hr+s—k p+l—j+kr

T2

lr+p+1—j—2i+ks+ qg+i—j—2k—-2]

j=0 i=0j—s+k

g—lr+s sp—lLr+s—k p—1—j+kr
B K=0 j=o0 i=0j—s4k
[r+p—Jj—2i+k—~1,s+ g+i—j—2k—1]

(4.12)

When p = 0, the last triple sum of (4.12) is absent. We sim-
plify (4.12) by first combining the second and fourth triple
sums, then the third and fifth triple sums, and then combin-
ing the results and adding this to the first triple sum. We
treat the case p5#0 and p = O separately.
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Case p#0: Terms in the difference of the second and
fourth triple sums will occur because of differences in the
upper bound of the ranges of £, j, and i. A difference in the
range of k will occur when ¢ — 1<7 + s. This difference will
be the terms for k = g — 1 in the second triple sum, that is

spr+s—q+1 p—j+qg—1Lr

[ifq—lgr—}-s, z

ji=o0 i=0j"s+g—1

[r+p—j—2i—q,s—qg+i—jl{. (4.13)
For k < g — 1, a difference in the range of j will occur when-
ever min (s,p,” + s — k) = p and min

(s,p + L,r + s — k)= p + 1. This will require s>p + 1 and
r+s—k>p+ 1, thatis k<r + s — p — 1. The difference
will be the terms for j = p + 1 in the fourth triple sum,
g—2r+s—p—1 k,r

[if szp+1, —

k=0 i=0p+1—s+k

[r—2i+ks+q+i—p—2k—3]}% (4.14)

Fork<q — 1l andj<p + 1, difference in the range of i will
occur whenmin (p + 1 —j+ kr)=p+ 1 —j + k and min
(p—Jj+kry=p—j+ k. Thisrequires r>p + 1 —j + k so
Jj2p + 1 — r + k. The difference will be the terms for
i=p+ 1 —j+ kin the fourth triple sum, that is

qg—27r+s spr+s—k

k=0 j=0p+1—r+k

[r—p+j—k—1s+q+p—2i—k—1]. (415
A similar analysis of the difference of the third and fifth
triple sums gives

qg—lr+s—p k,r
if s>p, 2
k=0 i=0p—s+k
[r—2i+k—1,s+q+i—p-—2k—1]], (4.16)
and
gq—lr+s sp—1Lr+s—k
k=0 j=0p—r+k
[r—p+j—k—ls+q+p—2—k—1]. (417
Now in (4.14) replace k by k — 1 giving
qg—1lLr+s—p k- Llr
{if s>p+1, — D
k=1 i=0p+k—s
[r—2i+k—1,s+q-+-i—p—2k—1]} (4.18)

and combine this with (4.16). If s = p then i/ = k giving

q— 1,r

> lr—k—1g—k—1].

k=0
Since the term here for & = ris redundant we may write this
as

g—1,r—1

[r—k—1g—k—1]. (4.19a)

K=0
Similarly if s>p + 1, (4.16) and (4.18) combine to give the
term for & = 0 (and hence / = 0) in (4.16) plus the terms with
i = k in (4.16) whenever r>k. These are

Michael F. O’'Reilly 2026



[r—1s+g—-p—1]
qg— 1
+ > lr—k—Ls+qg—p—k—1]
K= 1
q—1,r

= Z [r—k—1,s4+qg—p—k—1].

k=0
In this the term for k = ris redundant. So (4.19a) and (4.19b)
may be written commonly as
(r—k—1,s4+q—p—k~— 1]}.
(4.20)

(4.19b)

g—1r—1

{if s>p, z

k=0

Similarly (4.15) and (4.17) combine giving terms
(i) for k = g — 1 in (4.17) whenever r + s>¢q — 1 and
when k<g — 1;
(ii) forj = pin(4.15) whenever min (s,» + s — k )»p; and
(iii) for j = p — r + k in (4.17) whenever p — r + k0.
[All these terms under (iii) are, however, redundant].
The terms of (i) are

sp—~1lr+s—qg+1 ]
lr—p—q+js+p—2]

j=0p—r+gq—1
Herethetermsforj=p—r+g—landj=r+s—qg+1
(if they occur) are redundant. As the latter is the only term
when » + s = g — 1, the terms of (i) reduce to

sp—lir+s—gq

if r+s>q, >

i=0p—r+gq

[r—pFQ+j,s+p—2j]]-
(4.21)

The terms of (ii) will occur when s>p and k<r + s — p. They
will be

g—2r+s—p
— z (r—k—1,s4+qg—p—k—1].

k=0
In this sum the terms are redundant for k> r, so (ii) gives
g—2,7—~1

{if s>p, — Y

k=0

[r—k—1,s+q—p—k— 1]}.
(4.22)
Equations (4.20) and (4.22) combine to give a single term

{ifr>q,s>p, [r—g,5 —pl}. (4.23)
But this is exactly the term under the correct conditions for
including a term with j = p in (4.21) giving

Spr+s—g

[if r+s5>q, Z

j=0p—r+gqg

[r—p—q+j,s+p—2j]]-
(4.24)
So
(4.24) = (4.23} 4 (4.21)

= (4.20) + (4.22) + (4.21)

= (4.15) + (4.17) + (4.20)

=(4.15) + {4.17) + (4.14) + (4.16)
To have the sum of the last four triple sums of (4.12) we must
add (4.13) to (4.24). Note that in (4.13), if j=r +s—g + 1,
the terms are of the form [p —s 4+ 2g —2i — 1,i —r — 1]
and are redundant since /<r. In particular if r + s =g — 1,

(4.13) is 0. Also for all j, the terms for i = j — s + g — 1 are
redundant. So (4.13) may be rewritten
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spr+s—q p—j+gq—1Lr

[ifr+s>q, 3

j=o i=0j—s+gq
[r+p—j—2p+%S-q+i~ﬂl
Adding this to (4.24) gives

Spr+s—q p—j+qr

{if r+s>q, Y

J=0 i=0j—s5+gq

[r+p—j—2i+qgs—qg+i—j] (4.25)

Case p = 0: Here, the fifth triple sum of (4.12) does not
occur and the third triple sum is

g—lr+s k,r
[r—2i+k—1,s+g+i—2k—1]
k=0 i=0—~s5+k
which equals (4.16) with p = 0. So the last four triple sums
reduce to

(4.13) + (4.14) + (4.15) + (4.16) = (4.13) + (4.18) + (4.15)
+ (4.16) = (4.13) + (4.15) + (4.20) with p = 0.

Equation (4.13) becomes

g— 1.

{ifq-—l<r+s, [r—2i+q,s—q+i]}.

i=0,~s+q—1
Here the terms for i = — s + ¢ — 1 (which is the only term
when r + s = ¢ — 1) is redundant. So (4.13) reduces to

g—1,r

[if g<r+s, Yy

i=0,—s+4¢q

[r—21’+q,s—q+i]]. (4.26)

Also (4.15)becomes Z{ 5" **[r—k—1,s4+q—k—1}in
which all terms are redundant for k>, giving

— 3322 ' [r—k— 1,54+ q— k — 1]. Combining this
with (4.20) which becomes (for p = 0)

oy r—k—1,s+g—k— 1] gives {if g<7,

[r — g, 5]}. It is convenient to write this as [if g<r + 5,

[r — g, 5]} (introducing redundant terms for 7 < g<r + s).
Combining this with (4.26) we get for the sum of the last four
triple sums in the case p =0,

qr

[if g<r+s, Y

i=0,-—-54¢

[r—2i+q,s~q+i]}.

This is again (4.25) with p = 0.

All that remains is to combine (4.25) to the first triple
sum of (4.12). This has the effect of extending the upper index
for k to min (g, + 5) which give (4.6), as required, for the
product [p,q][r, s). Q.E.D.

5. MULTIPLICITY FORMULA

We now determine the conditions necessary for a term
[m,n] to occur in the product [p, g][7, s] and the multiplicity
with which this term occurs. The equations

r+p—k—2i4+k=m,
S+g+i—j—2k=n, {5.1)

must be solved for , j, and & subject to the conditions
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0<k<min (g, + 5),
0<j<min {s,p,r +5— k), (5.2
max (0j — s + k)<i< min (p — j + k7).

For a fixed value of , (5.1) has a unique solution for / and j,
namely,

i=4{r—s)+p—q —(m—n)}+k

J=3{lr+ 2+ (p +29) — (m + 2n)}] — k. (5.3)
Since / and j are integers this requires that

3 divides (r —s5) + (p — q) — (m — n). (5.4)
Write

C=1i{r—s+@p—gq —(m—n)
and

D=1 {{r+29+p+29) —(m+2n)]
s0{5.3)becomesi=C+ k,j=D — &,

and substituting this is (5.2) gives necessary and sufficient
conditions for k, namely,

0<k<min (g,r + s), (5.5a)
0<D — k<min (s,g,r + 5), (5.5b)
max (0,D — 5)<C + k< min (p — D + 2k,r). (5.5¢)

Equation (5.5b) may be rewritten as separate inequalities
k<D, k>»D — s, k>D — p, D<r + sand (5.5¢) may be rewrit-
tenk>max({— C,D—C—s), k<« —C+r,k>C+D—p.
Collecting these we obtain

max (0,0 —s,D—p, —C,D—C—s3,
D 4 C — p)<k<min (g, D, r — C)and D<r + 5. {5.6)

In particular a solution for k requires that
max (0, D —s5,D —p, —C,D—-C—5,D+C—)p)
<min {g, D, r— C)and D<r+s. 5.7

Expressing (5.7) as separate simultaneous equalities gives

D>0,C<r,D<s + ¢, D<r+ 25, D + C<r +3,
D<p+q,D<p+r+s,

D+Cgp+r, —C<q, —C<r+5, —C<D,
D+ C<Lq+s5,D—CKr+12s,

—C<5, D<r+5,D+C<p+¢, D+ C<p+r+55,
C<p, D +2C<r +p.

Some of these inequalities are implied by others:
—C<s=>—C<r+s,
D+ Cgp4+r=oD+Cp+r+s,
D<r 4+ s =D<r 4+ 2s,
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D4+ C<p+rand —C<s=D<p+r+s.
Further

D-C<qg+s5sos+qg—n<s+qg<n>0
and

D+ 2C<r + por 4+ p — m<r + pom>0.
Collecting these inequalities we get

Proposition 7(a): The necessary and sufficient condi-
tions for [m,n] to appear as a summand in the product
[r,sllp.gl are,if C= { {(r—s)+ (p — ¢) — (m — n)] and
D=1 {{(r+2s)+ (p + 29) — (m + 2n)} that

{i) C {and hence D} are integers satisfying

(ii) 0KD<min (s + ¢,p + g, r + ),

— min { g, 5)<C< min (r,p),

OKD+C<min(r+s,p+rp+q).
Since each value of k satisfying (5.6) gives a unique solution
for 7 and j, the multiplicity of [m,n] in (4.6) when the condi-
tians of Proposition 7(a) are satisfied is
1 + min (g, + 5,D,r — C) — max (0,D —s, D — p,
—~CD—-C—s5,D+C—p)

=1+min(gg+s—D,qg+p—D,g+ Cn,

Ds,p,D+CD+n—qp—Cr—C,

r+s—C-—D,

r+p—-C—D,r+n—C—gq,r,r+p—D-=2C).
Notethatr +p—D —-2C=myr+n—-C—gq
= r + 5 — D and that the terms apart from p, g, r, s, m, n are
the differences of D, C, and D + C, respectively, and the end
points of the intervals in which they lie according to Proposi-
tion 7(aj.

Proposition 7(b): If the conditions of Proposition 7(a)
are satisfied and if @, b, ¢ are the minimum differences of D,
C, and D + C, respectively, from the end points of the inter-

vals in which they are thus constrained to lie, then the multi-
plicity of [m, n] is

14+ min(p,g,r,s m,n,a,b,c).

An alternative explicit formula for this multiciplicity may be
found in Biedenharn and Louck,” Eq. (3.5) using the pattern
multiciplicity determined in Eq. (2.17) of Louck, Lake, and
Biedenharn."?

(§. Gasiorowicz, Elementary Particle Physics (Wiley, New York, 1967), pp.

2571
2 . C. Biedenharn and J. D. Louck, J. Math. Phys. 13, 1992 (1972).

33 D. Louck, M. A. Lake, and L. C. Biedenharn, J. Math. Phys. 16, 2411
(1975).
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An addition formula is derived which contains the addition relations for theta functions with

characteristic proportional to 1/N, N integer.

PACS numbers: 02.30.Dk

I. INTRODUCTION

Theta functions with characteristic proportional to 1/
N have now become a subject of interest in physics. They
provide the solution of the factorization equations associat-
ed with the symmetry Z,, X Z,,. The factorization equations
are known to be responsible for major developments in two-
dimensional physics. They were first introduced by Yang' in
the nonrelativistic quantum theory of ¥ boson particles in-
teracting via a two-body delta function potential in one spa-
tial dimension. The factorization equations appeared there
as conditions for the scattering matrix of two particles that
allow the exact diagonalization of the Hamiltonian by means
of the Bethe ansatz method. Later the factorization equa-
tions were rediscovered by Baxter? in his solution of the
eight-vertex lattice model. There they correspond to the con-
dition of commutativity of the transfer matrix at different
values of the spectral parameter. Factorization equations
were also extensively used to compute two-dimensional
quantum S-matrices that have the property of factorizabi-
lity.>* This property means that the S-matrix for the scatter-
ing of V particles can be represented as the product of two-
body S-matrices. For completely integrable field theories,
the use of factorization equations plus unitarity and crossing
symmetry of the S-matrix makes it possible to calculate the
S-matrix up to CDD ambiguities.>* The quantum inverse
scattering method recently proposed by Faddeev et al.’ also
relies on these equations for finding the energy spectrum of
several quantum theories through its algebraization of the
Bethe ansatz.

The connection of factorization equations with abelian
manifolds was first pointed out by Cherednik.® D. V. Chud-
novsky and G. V. Chudnovsky,’ and, independently, Bela-
vin® have found that the solutions of the factorization equa-
tions with symmetry Z,, X Z, are given by ratios of theta
functions with characteristic 1/N. In Ref. 7 it is claimed that
these solutions provide immediate generalizations of the
XYZ model for spin variables that correspond to the N th
root of unity. The same functions have also made their ap-
pearance in G. 't Hooft’s analysis of the properties of electric
and magnetic fluxes in SU(V ) gauge theories.’

If one wishes to obtain physical theories from the
Z, X Z,, symmetric solutions of the factorization equation,
it is important to have in advance equations that relate these
theta functions for different arguments. The factorization
equations themselves involve unknown functions at differ-

* Supported by Conselho Nacional de Desenvolvimento Cientifico e Tecno-
logico-Brasil.
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ent points of their arguments. Such relations are known as
addition formulas.

In this paper an explicit derivation of these addition
formulas for the theta functions with characteristic propor-
tional to 1/N is given. One single formula including several
addition formulas is obtained. It is conjectured that it con-
tains all possible addition relations for these functions. To
the best of our knowledge such a general theorem is not
available in the mathematical literature, although special
cases of it can be found.

The plan of the paper is the following: the definition of
theta functions with characteristic proportional to 1/N and
some of their properties are introduced in Sec. I, and in Sec.
III the addition formula for these functions is derived. Some
useful mathematical relations are relegated to the Appendix.

Il. GENERAL PROPERTIES

Theta functions of characteristic proportional to 1/N
(N integer) are functions of two continuous complex varia-
bles x and 7 that can be defined by the series

+ o

ONxr= 3

The condition Im7>0is imposed in order to assure con-
vergence. The characteristic is defined as the pair of integer
numbers (€,u) such that each one can take values from zero
to N — 1. Therefore, for the case N = 2 they correspond to
the well-known Jacobi’s theta functions.'® There are N 2 in-
dependent functions and except for the case N = 2 arbitrary
{e,12) or N> 2 with € = u = O, parity is not well defined for
these functions. From the definition (1.1} it is straightfor-
ward to deduce the following properties:

eiﬂ'“'l +€/NPr+2n+e/Niix+ u/N)} (11)

2 ’
9€+ €. +y'(x!7-) = exp (lﬂ['}evzﬂ' + 26— X + .Jif—(lu +‘U«'):”)

N
6’ #I
xe,, (x +—A7¢+N,r), (1.2)
6E+N,,u (X’T) = ee,u (er)’ (1.3)
O, , nix,7) = e¥V<O,, (x,7), (1.4)
Ol —x7)=0_, _,(x7) (1.5)

We have suppressed the index N for reasons of economy.

An interesting and well-known property'® of the func-
tion of By(x,7) is that it admits a product expansion. Equa-
tion (1.2) makes readily available similar product expansions
for the above-defined theta functions if one considers the
appropriate shifts on Oy(x,7);
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96 X,7) = ex [Zﬂlﬁ-(x-}-i)] E/N? hod 1 — g
u( ) P N N q ,,1;[,( q

o0

X [1+2 2"“‘00527r(x—+-£7'+i)+ “"‘2},
1L 4 N NTE
(1.6}

where it is understood g = &'

i11. ADDITION FORMULAS

The general addition formula for the theta functions of
characteristic proportional to 1/ will be obtained in two
steps. The first one consists in deriving a particular addition
formula that for N = 2 reduces to Jacobi’s fundamental
theorem.'® For N = 3 it gives a result derived once by
Krazer.'' The second step corresponds to taking appropriate
shifts in the arguments of the theta functions present in this
particular addition formula and getting a more general re-
sult. Property (1.2} is used to achieve this goal.

Consider 2N theta functions 6, (x;,7) with the same
characteristic (¢,1) and the same theta period 7.

A. Addition formula (1)
- —2m
2 Z [96;1 (tl’T)eep (12’7-) €1 (tzN ;T)] €xXp ('——"‘G/J>
€=0 4 =0 N
=N [900("1:7')600(’2»7')“‘900({'”’7')] . (2.1)

The vectors T = (2,4, 2,5 ) and R = (r,,7,,-,7, ) are relat-
ed by the orthogonal transformation R = (1/NU,y, T,
where U, , is the matrix defined in the Appendix.

Proof: Consider the product of 2N theta functions
6., (x;,7) with the same characteristic (€,u) proportional to
1/N and the same theta period 7, but with independent argu-
ments x,;,1 <I<2N;

65;1 (ZDT)ecy (I2’T)"'ee;z (IZN ’T)

=n~i exp (1’7r {(n+%1)r(n +%I)7'

= — ®

g en)) e

In addition to the vector 7, this equation makes use of the
vectors # = (n,,n,,-,M,y} and 7 which has all of its 2V com-
ponents equal to one. The summation symbol shouid be un-
derstood as meaning

] 0 @ 0

$=3 33

Half of the exponential term that is #n-independent goes
to the left-hand side and the u-dependent term is made ex-
plicit on the right side,
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[ 66/,1 (tI’T)eey (tZ!T)"'Qe,u (IZN’T)]

i
X exp ( — —6;1 ,u) 2 i exp————(nTI + e)]

<ol 1Y (1 <2,
+ Z(n + —]‘:‘V-I)TTD 2.3)

The left-hand side becomes a sum over all N theta pro-
ducts with the same €, when we sum over u in the above
equation. One can get rid of the u-dependence inside the
summation. Then a constraint has to be introduced on the
integer values that the summation variables n; can assume.

N1 { 2mi (nTI—i—e)H

D [exp
©=0
_ [N if n7I + € = Nk,
|0 if 0T+ e#Nk,
where from now on £ is any integer real number. Therefore

orne obtains
N-—-1

3, [OultunOultuO yltaeirl) exp-—heu)

u=0
=N i exp(hr[(n +—€—1)T(n+£1)7—
n= < N N
2( + GI)TT])
+2{n+—
N
n'l + € = Nk. (2.5)

Take the vectors (n + (¢/N )I )and T and rotate them by
the orthogonal matrix (A5) defined in the Appendix. One
gets two new vectors, defined by

1 €
€ =_—y (n + ——I)
Pr=yren N

(2.4)

1 €

and
1
R=-U,, T 2,
e 2.7

The vector p'“ will play the role of the new summation
variables. Its components are not always integer numbers, as
can be deduced from (A7),

1
Pile =F(nl 41y 4 e Ay + €) — 1y (2.8)

Nevertheless the constraint imposed on the n-summation,
n™I + € = Nk, is exactly the condition required for p, ¥ to be
an integer number. Therefore noninteger values for p*
should be simply disregarded. The constraint has to be re-
written in terms of the new integer variables p, (¢ because it
also imposes a condition on them. Take Eq. (2.6) and apply
the orthogonal transformation defined in the Appendix.
Thanks to properties (A2) and (A3}, one gets

1

— @—nt+ir 2.9
N 2n) P I (2.9)

Transpose the above equation and sandwich it with the unit
vector 1. Then one obtains the constraint in the new form

P97 = Nk + €. (2.10)
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Now by use of the orthogonality property (A6), one gets

N-1 ~ 2 .
i Z0 [96# (tl’T)6€” (tz’T).ues# (tZN’T)] €Xp ( Nﬂ-l ’u)
[[ =

=N 3 exp (ir{p7p' 7 + 2p97R }),

ple)= — oo
pPOTI = Nk + €. (2.11)
The constraint is dropped if we sum over € from zero to
N — 1 because all integer numbers admit one of the forms
Nk,Nk + 1,--\Nk + N — 1. Therefore there are no more re-
quirements over the components p, ‘¢ and the right-hand
side becomes a product of 2V theta functions of null charac-
teristic

N1 o«
S Y exp Gr{p9p9r+2pR })

€=0 ple)j= —
= By, 7Bl r2s7)... Ol Fan T)P'TT = Nk + €. (2.12)
B. Addition formula (2)

N [66,;1, (yl)eshuz (y2)"'eezNy2N( Yanl]

N—1N-—1 .
=3 3 ew(ussen)[o, )
e=0 u=20 N €+ €].u+pu
(2] )0 , _
x s+si-u+ui(x27) e+e§N.y+#§N(x2N T)],(2 13)

where
1
f= Yv_(el + 6+ ...+ €6p),

1
g=—A—,(,u. + o+ o+ Uy), (2.14)
e=f—¢€, u=g—u, (2.15)
X= —ZIVU(M) Y. (2.16)
Proof: Make the transformation
€ Hi

r, =V, +—7+— 2.17

k= Yk N N { )

in the right-hand side of the addition formula (2.1), where
{€: .44, ) are any integer numbers. Looking at the previously
defined vector T, one obtains
(f—€)  &—m)
L, =x;, + I, T+ N
where x, is related to y, by (2.16). Property (1.2) enables us
to relate a theta function of general characteristic with the

theta function of zero characteristic
2

o oo i3+ ])
X Oy ( YirT)- (2.19)
The product of 2NV null-characteristic theta functions
where each one is independently shifted by (2.17) is
o7 1,7)O00r2,7)... O a5 T)

= exp( - iv{%( Zi ei) + %( ﬁ ekyk)

k=1 k=1

2 2N
+ F ( 2 ekou’k)])eé,,u, (yhT]szyz (.yZ!T)"'
k=1

>< 662«. Mo~ (VZN)T)'

(2.18)

(2.20)
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Following the same pattern the use of (1.2) gives

6., (t,7) = exp ( _ iﬂ[(f;:k) - 2(f;vek)

)

XCXp( —2mi —‘%)ee +f— €+ 8 —pk (xk ’T)'
(2.21)

It is straightforward to derive similar results for the
product of 2N theta functions of characteristic (¢,.) indepen-
dently shifted.

6., (70, (t27)...0, (t1x,7)
ool -ffo($,4) 3
S TRONEY} )

k=1 k=1
X [96 +f—€m+g—m (xl’T)QH—f— €4t +8—M2(x2’T)"'

Xef +f- 52N-H+g-u2N(x2NsT)] . (222)

When expressions (2.20) and {2.22) are introduced in the ad-
dition formula (2.1) all the €, , 4, x,., and y, dependence in
their exponents cancel against each other. This can be
checked with the help of properties (A7) and (A8) and so the
addition formula (2} is obtained. For the case N = 2 it coin-
cides with the result of Smith'? that leads to all possible addi-
tion formulas for Jacobi’s theta functions. For arbitrary ¥
and special values of the arguments y, and of the character-
istics (€, ¢, ), this addition formula should degenerate into
the one contained in Krazer’s book."?
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APPENDIX

Consider the (2V ) X (2N ) matrix U, defined by its ele-
ments

1 if i#j,

U. =
i1 =N if i=j,
This matrix has the two properties

U(gN) = U(zzv; (A2)
and

U, = Naw), (A3)
where Iy, is the (2N )X (2N} identity matrix.

For a vector a = (a,,a,,...,a, ) define 4 as the sum over
all its 2NV components,

1<i, j<2N . (A1)

4= 3 a,. (A4)

i=1
Consider the orthogonal transformation

, 1
@' =—Uaya. (A5)
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For any two vectors @ and b, we have
alb' =a’b. (A6)

The components of the rotated vector are given by
a] = iA —a (A7)
N

and it follows that
A ' =A4. (A8)

In particular, for the unit vector /, defined with all its
2N components equal to one, we obtain

1
VoI =1 (A9)
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An algorithmic method is developed for investigating the transformation properties of second-
order equations of Painlevé type. This method, which utilizes the singularity structure of these
equations, yields explicit transformations which relate solutions of the Painlevé equations II-VI,
with different parameters. These transformations easily generate rational and other elementary
solutions of the equations. The relationship between Painlevé equations and certain new
equations quadratic in the second derivative of Painlevé type is also discussed.

PACS numbers: 02.30.Dk

I. INTRODUCTION

We say than an equation is of Painlevé type if all its
solutions possess the Painlevé property, i.e., their only singu-
larities are poles or nonmovable critical points.' The most
well known second-order equations of Painlevé type are the
so called six Painlevé equations PI-PVI' discovered by Pain-
levé? and his school® at the turn of the century. They classi-
fied all equations of the form w” = F(w', w, z), where Fis
rational in w’, algebraic in w, and locally analytic in z, which
have the Painlevé property. They found that, within a Mo-
bius* transformation, there exist fifty such equations. Distin-
guished among these fifty equations are PI-PVI. Any other
of the fifty equations can either be integrated in terms of
known functions or can be reduced to one of these six equa-
tions. Although PI-PVI were first discovered from strictly
mathematical considerations, they have recently appeared
in several physical applications (see, for example Refs. 5-7).

Explicit transformations and relevant exact solutions
admitted by the Painlevé equations first appeared in the So-
viet literature® and are summarized in Ref. 9; the main points
are as follows:

(1) For certain choices of the parameters, PII-V admit
one-parameter families of solutions expressible in
terms of the classical transcendental functions:
Airy,>'? Bessel,!! Weber—Hermite,'? and Whitta-
ker,'? respectively.

(ii) PIT-V admit transformations (see Ref. 14—17) which
map solutions of a given Painlevé equation to solu-
tions of the same equation but with different values
of the parameters.

(iii) Using (ii) one can construct (for certain choices of
the parameters) various elementary solutions of
PII-V. These solutions are either rational or are
functions which are related (through repeated dif-
ferentiations and multiplications) to the above-
mentioned classical transcendental functions.

(iv) For PVI it was only known that, for a certain single
choice of its parameters, it admits a one-parameter
family of solutions expressible in terms of hypergeo-
metric functions.'®

However, the above results apparently were obtained
by rather ad hoc methods. Moreover, in spite of the extensive

2033 J. Math. Phys. 23(11), November 1982

0022-2488/82/112033-10$02.50

amount of research on Painlevé equations, the transforma-
tion properties of PVI were not found. Also, no other one-
parameter family of solutions of PVI was found, save for the
one mentioned above. It is important to note that PVIisin a
sense the most general Painlevé equation since it contains the
other five as limiting cases.'

In this paper:

(1) We develop an algorithmic method for systematical-
ly investigating the transformation properties of second-or-
der equations of the Painlevé type. This method yields ex-
plicit transformations: (a) Between a given Painlevé equation
and the same Painlevé equation but with different values of
its parameters. (b) Between two different Painlevé equations
(for example PIIT and PV). (c) Between a Painlevé equation
of the type investigated by Painlevé (i.e., linear in the second
derivative) and an equation of the Painlevé type which is
quadratic in the second derivative.

{2) As an application of this method we rederive the
known transformation properties of PII-V and also derive
the transformation properties of PVL. The latter are used to
obtain (for various choices of parameters) one-parameter
families of solutions of PVI. Among these solutions are ra-
tional solutions as well as solutions which are related
(through repeated differentiations and multiplications) to
hypergeometric functions.

{3) We relate PIII and PVI to certain new equations
quadratic in the second derivative and of the Painlevé type.
Some of the results concerning PVI have been an-

nounced in Ref. 19.

A. The connection with inverse scattering and
monodromy preserving transformations

In recent years considerable interst has developed in
Painlevé equations. Ablowitz (Ramani) and Segur,?® (Ref.
21) have discovered a deep connection between equations of
Painlevé type and the PDE’s solvable by the inverse scatter-
ing transform.?? For example, PII and special cases of PIII
and PIV may be obtained from the similarity reduction of
the modified Korteweg-deVries, the sine-Gordon and the
nonlinear Schrodinger equations, respectively. It is interest-
ing that proper reductions of the Korteweg—deVries (KdV)
equation lead to both PI and PII:
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(i) KdV and PII. Consider the KdV equation in the form
u, +6uu, +u,, =0. (L.1)

Equation (1.1) is clearly invariant under the group of trans-
formations x’ = Ax, t' = A3, u' = A ~2u, where A is some

arbitrary parameter. The solutions of (1.1) invariant under

this group of transformations (the so-called similarity solu-
tions) are characterized by u = (3t)7*3U (2), z = x(3¢ )~ "/3,
where U (z) satisfies

K(WU)=U"+6UU’' —(2U +2U") = 0. (1.2)

Whitham?® has noted that Eq. (1.2)is related to PII. Actually
there is a one-to-one correspondence between the integrated
form of (1.2} and PII. Equation (1.2} can be integrated once
using the following identity:

[QU - Z)K(U)) = 2U — 2K \(U), (1.3}

where
K(U)=U" +20° —zu 4 YU =0 :
W)=v" 4207 -0+ LEE = (14)

Equation (1.4} is essentially equation PXXIV of Ref. 1 and is
related by a one-to-one map with PII (see Sec. III).

(1i) KdV and PI. Equation (1.1) is also invariant under
the group of transformations

xX'=x+4+6t4, t'=t+A/a, u=u+A4, (1.5)
where A and a are arbitrary parameters. Regarding « fixed,
one immediately** obtains the following characterization for
the solutions of (1.1) invariant under (1.5):

u=at+Ulz), z=x—3at? (1.6)
where
U" 4+ 6UU' +a =0. (1.7)

Equation (1.7), upon integration, yields PI.

Using the ideas of Ablowitz and Segur one can charac-
terize a nonelementary one-parameter family of solutions of,
say, (1.2) through a Gel’'fand-Levitan linear integral equa-
tion of the Fredholm type. Recently we have proposed a new
method? for linearizing the Painlevé equations, using singu-
lar integral equations and Riemann-Hilbert theory. In this
way we have characterized a three-parameter family of solu-
tions of (1.2). This work suggests that the transformations
given in this paper may be useful in obtaining the general
solution of, say, PII using our method. It is an important fact
that using these transformations one can find the general
solution of a given Painlevé equation for arbitrary values of
its parameters «, provided one knows the general solution of
this equation for only a range of a. For example, for PII one
needs to know the general solution only for

—12<a<1/2.

We also note that there is a close connection between
ODE’s of Painlevé type and monodromy-preserving defor-
mations. This was emphasized and used by Flaschka and
Newell?® and by Sato et al.*” In particular, Flaschka and
Newell derived a formal system of linear singular integral
equations from which the solutions of PII and of a special
case of PIII are to be found. However, they did not investi-
gate in general the question of existence of solutions of their
integral equations.
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From the above comments one sees the richness and
broad mathematical content associated with the investiga-
tion of Painlevé equations. Undoubtedly, considerable re-
search will continue in this area.

Il. AMETHOD FOR INVESTIGATING THE
TRANSFORMATION PROPERTIES OF SECOND-ORDER
EQUATIONS OF THE PAINLEVE TYPE

Suppose we are given one of the fifty equations found by
Painlevé and his school, which we write in the form

v" =P + Py + P, (2.1)

where P, P,, P, depend on v, 2, and a set of parameters
denoted here by a.

The first problem is to find the discrete Lie-point sym-
metries of (2.1), i.e., to find transformations of the form

biz; @) = Flulz; o), 2), (2.2)

where the function F is such that if v(z; a} solves (2.1) with
parameters «, then f(z; @) solves (2.1) with parameters a.
Using the singularity structure of (2.1), the procedure for
finding such transformations is immensely simplified; since
the only transformation of the type (2.2) preserving the Pain-
levé property is the Mobius transformation, one immediate-
ly replaces (2.2) by

bz @) = Lot a (2.3)
asv +a,
where a|, ..., a, are functions of z only. Using (2.3) the Lie-

point discrete symmetries of (2.1) are easily obtained.

Having obtained the Lie-point symmetries of {2.1} one
may look for generalized discrete symmetries of (2.1),*% i.e.,
for transformations of the form

b(z; &) = Flv'(z; ), v(z; &), 2). (2.4)

However, since we are not only interested in finding trans-
formations relating a Painlevé equation to itself, but also
relating two different equations of Painlevé type, we replace
(2.4) by

u(z; @) = F(v'(z; o), v(z; ), 2), (2.5)

where F is such that u satisfies some second-order equation
of the Painlevé type. The only transformation of the type
(2.5), linear in v',*° preserving the Painlevé property is the

one involving the Riccati equation, i.e.,

~ U 4+ar+buvtc
uiz, a) = 5
dv +ev+f
where a, b, ..., fdepend on z only. Equation {2.6) plays a
central role in our analysis.

The algorithm: Given Eq. (2.1) determine g, ..., f by
requiring that (2.6} define a one-to-one invertible map be-
tween solutions v of (2.1} and solutions # of some second-
order equation of the Painlevé type. In this process the latter
equation is completely determined.

Let us be more specific. Introducing the notation

J=dv+ev+f Y=av’+bv+c, (2.7)

differentiating (2.6), and using (2.1) to replace v” and (2.6) to
replace v', one obtains

(2.6)
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Ju' = [PJ?—2dJv —eJ Ju* + [ — 2P JY + JP, + 2avJ
+ bJ +2dvY +e¥Y — (d 'V + v+ f')]u
+ [PY?—P,Y 4P, —2avY
—bY+av*+bv+c']. (2.8)

There are two cases to be distinguished:
{A) Find a, ..., fsuch that (2.8) reduces to a linear equa-
tion for v,

AW, u,zyv+Blu',u,z)=0. (2.9)

Having determined a, ..., fupon substitution of v = — B /4
in (2.6) one determines the equation for «, which is of the
same type as (2.1} (i.e., it will be one of the fifty equations
mentioned above).

(B) Find q, ..., fsuch that (2.8) reduces to a quadratic
equation for v,

AW, u, 2V +Bu,u,zv+ Cu',u,z)=0. (2.10)

Then (2.6) yields an equation for ¥ which is quadratic in the
second derivative. These types of equations, having the Pain-
levé property have not previously been considered in the
literature.

Note that (i) It turns out that PII-PV admit transforma-
tions of both types (A) and (B). However, PVI does not admit
a transformation of the type (A) above. (ii) Utilizing the way
that the parameters a enter in the equation for « one can find
a transformation relating Eq. (2.1) with different o’s. (iii)
When equations (2.9) and/or (2.10) break down (i.e.,

A = B = C = 0), they define one-parameter families of solu-
tions of (2.1). Using these solutions and the transformation
properties of (2.1) new one-parameter families of solutions
can be obtained.

These points will be clarified after applying the above
method to PIL

1. PAINLEVE Il

In this section we use Painlevé II to illustrate: (a) How
the transformation (2.6) can be used for investigating the
transformation properties of a given equation. (b) How cer-
tain of these transformation properties can be used for ob-
taining elementary solutions.

Note that: (i) Here we look only for transformations oJf

A. Derivation of the above results

the type (A), i.e., we invoke (2.9). This is only for conve-
nience. We stress that transformations of the type (B), [see
{2.10)] exist for all PII-PVI. In this paper we shall consider
such transformations by necessity for PVI [since transfor-
mations (A) do not exist in this case] and as an aid to the
reader for PIII.

(ii) Painlevé and his school found that some of the fifty
equations mentioned in Sec. I are related to PI-PVI. For
example equations PXXXIV, PXXXV, PXLV, PXLVI,
PXLYVII of Ref. 1 are related to PII. An exhaustive investi-
gation of transformations (A}, not only establishes this rela-
tionship, but also gives a one-to-one correspondence be-
tween PII and each of the above equations. However, here
we only present the relevant result for PXXXIV and also
comment on PXXXV. We note that if one is simply interest-
ed in finding a transformation mapping PII to PII then any
of the above transformations may be used.

Theorem 3.1: Let v(z; @) be a solution of PII

v =20 +zv+a. (3.1)
Then ]z; @) are also solutions of PII, where
vz;a)= —vz;a), a= —a, (3.2)
1+ 2a
Nz @) = — viz; a) — Ev—zfiu_;
a=a+1, a# -} (3.3)
The case @« = — 1/2 is considered in Lemma 3.1.

Theorem 3.2: Let v(z; a) be a solution of PII and let
u(z; v) be a solution of
v+u — W)

w26 —zu +
2u—z

=0; v=ala+1). (3.4)
Then there exists the following one-to-one correspondence
between solutions of (3.1) and (3.4)

. 2 u +a
u= —v —v, v=

- (3.5)

Equation (3.4) under the transformation
w=(u —2/2)/(4a + 1) reduces to PXXXIV of Ref. 1.
Lemma 3. I: PII admits a one-parameter family of solu-
tions characterized by
v 4+ 0¥ +2/2=0, (3.6)
ifa= —1/2.

Comparing (3.1) and {2.1) one finds that P, = P, = O and P; = 2v* + zv + a. In considering Eq. (2.8) one has to consider
separately the two cases d = 0, and d #0. Here we only consider d = 0. Then (2.8) becomes

’

u = —eu2+[

ev+f

3aev’ + (2af + 2eb — e'\v + (bf + ec — f) u

+[2(1—az)v3+(a’——3ab)v2+(z+b’—b2—2ac)v+(a—bc+c’)

ev+f

Our goal now is to choose a, b, ¢, e, and fin such a way that
(3.7) becomes a linear equation for v. It is clear that this will
be the case if each of the above bracketed expressions (i.e.,
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(3.7)

|
the coefficient of # and the term independent of u) is linear in
v. Then, it is obvious that a> = 1 and that also ev + f must

divide each numerator appearing in the above brackets. Re-
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quiring this to be the case with e£0, one is led to establish a
one-to-one correspondence between PII and PXXXV of
Ref. 1. However, a simpler possible case is e = 0. Then, it is
clear from Eq. (2.6) that one may take, without loss of gener-
ality, f= — 1 [the minus sign is only for relating u directly
to (1.4)] and ¢ = O, since one can always ‘“‘absorb” them in
by a Mébius transformation. Hence, inserting
¢c=d=e=0,f= — 1in(3.7), this equation reduces to

w=Q2aw+bu+3ab’—z+b'—b—a (3.8)
Thus necessarily & = 0. Hence, Egs. (2.6) and (3.8) imply
(U +a)=v(2eu —z), u= — (V' + av’); @ =1. (3.9)

Taking for convenience @ = 1 and substituting
v = (4’ + a)/(2u — z) in the above expression for u, Eq. (3.4)
follows.

l.a= —1/2
The transformation (3.5b) breaks down iff u = z/2. But
then a + ¥’ must be zero, or a = — 1/2. (Actually one can

easily check that u = z/2, = — 1/2solve(3.4).) Hence Eq.
{3.5a) implies Lemma 3.1.

2. The transformation from Pl to PIl

Using the above results (i.e., the results of Theorem 3.2)
one can easily derive (3.3). The basic idea is to exploit the fact
that v in (3.4} is quadratic in a. Therefore, there exist two
values of the parameter , namely @ and — (@ + 1), which
give the same value of v and hence the same value of ¢, i.e.,
u(z; @) = ulz; — (@ + 1)). But then

u'lz; —la+1)j—(a+1)

e —la+ ) == et ) —2
Uz a)—(a+1)
2uiz; a) — z
=z a)— 22V
uiz,a) -z

Hence, replacing u by — (v* + v') and 8lz; — (@ + 1)) by
—v{z; (@ + 1)), Eq. (3.3) follows.

B. How to obtain elementary solutions

The transformations (3.2) and {3.3) can be used to obtain
all known elementary solutions of PII. Similarly, one can use
transformations (3.5) to obtain elementary solutions of Eq.
(3.4). First note that (3.3), (3.5) imply that

Uiz, —a)=ulz;a — 1), (3.10)

ez o+ 1) = — ulz; a)— z( “'(;;:8 ;)(a +1) )
| —2z

(3.11)
1. Rational solutions of Pl

It is clear that v = 0, a = 0 solve PII. Then using (3.3)
one can obtain a rational solution of PII for every positive
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integer
o5 0)=0, bzl = — =,
z
1 322
vz; 2)=— — y v 3.12
GA=— = (3.12)

Then Eq. (3.2) generates a rational solution for every nega-
tive integer.

2. Rational solutions of (3.4)

u =0, a = 0 solve Eq. (3.4). Then (3.10) and (3.11) im-
ply similar results as (1) above:

uz0)=0, uzl)=— =,
zZ
gy _ 822 —8)
uz; 2) e (3.13)

Note that the hierarchies of solutions (3.12) and (3.13) are
related by the transformations (3.5).

3. Airy type solutions of Pl

Lemma 3.1 implies that v(z; — 1) = y'/y is a solution of
PII where y is any solution of the Airy equation
y" + {z/2)y = 0. One cannot use this solution directly in (3.3}
to generate new solutions, because in this case (3.3) breaks
down. The trick is to first use (3.2) and then (3.3). In this way
one generates the following hierarchy of solutions:

vz, =) =y"/y, vz )= —y/y,

viz; ) =y'/y — /(27 + 2y, (3.14)
4. Airy type solutions of (3.4)

Similarly as above

uz; — ) =2z/2, ulz;l)= —2/y*—2z/2, . (3.15)

Remarks:

1. The results of Theorem 3.1 and Lemma 3.1 were first
given in Refs. 14 and 3, respectively. The result of
Theorem 3.1 was rederived later in Refs. 30 and 31 by
exploiting the connection with the inverse scattering
of the KdV equation.

2. We emphasize that the logical steps used here for {a)
deriving (3.4) and (3.5), (b) exploiting the quadratic
dependence of v on « to obtain (3.3), (c) characteriz-
ing one-parameter families of solutions of PII when
the transformation (3.5) breaks down, and (d) gener-
ating elementary solutions, remain valid for consid-
ering all Painlevé equations PII-PVI.

IV. PAINLEVE Il

In this section we consider PIII. Having familiarized
the reader with our method we now present both types of
transformations (A) and (B).

Theorem 4.1: Let v(z; @, 3, ¥, § ) be a solution of PIII

72
w_ U 1

v =—~———u’+i(avz+ﬁ)+yu3+-6—. (4.1)
v z z v

Then 9z, @, B, ¥ 5 ) are also solutions of PIII, where
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W5 B,78)= —vza,By.8); &= —a B=—B 7=7 8=6, (4.2)

Uz B 7, 8) = [z @, 8,7, 8)1 7%

2+8(=8'" +aly) "\

T
6.5, 7,3) = L o1+

_ 1/2
a= —[2+B(—8 "y, B= —[z+ay~”21<—a)'“(%), (=32 =(=-8/ T0r

In (4.4) we have assumed that

y#0and 2 +a(y)” "2 + B(—8)"*#0. (4.4¢)

If ¥ = 0 then (4.4) is replaced by

0z @ B,0,6)=zv/v* —(1+B(—8)""
+z(—8)'* N7, (4.5a)

a=(—8)"%"B=a2—B(—-6)"%), 6= —a’ (4.5b)

The case 2 + 8(—8)"/* + a(y)~ /> = 01is considered in
Lemma 4.1.
Theorem 4.2: Let v(z; @, B, 1, 8 )* be a solution of PIII
and let w(x; @, B, ¥, 0) be a solution of PV,
2 — 2
dw_ _Sw—l (51_&) _ldw,

_ (w—1)°
dx?  2ww— 1) \dx

2

x dx x

_a: _ﬂ (_5)1/2w
X(4 W 4w)+ x ’ (4.62)
where
el g_Uta—pf 5 (—a—p’
2’ 32 ’ 32 ’
y=(=98"% u=—[1+8(-6'7]. (4.6b)

Then there exists the following one to one correspondence
between solutions of (4.1) and {4.6)
o= 1)+ @+ 17+ [E vt (=8| -1 =0,
4.7)
a + p+a—1 .

2 w
Theorem 4.3: Let v(z; a, 8, ¥, 8 ) be asolution of PIII and

let ¢ (z; p, o, 7) be a solution of

(6408 + 2] =267 4p87+ 08 + 1) 484

p=24'"=8)"7 o=4la(—8)" By,
= —4a+7"?)B +(-8)"] (4.8b)
Then there exists the following one-to-one correspondencﬂ

w= — E—+(l+a—y)w—
w

A. Requiring (2.8) to be linear in v

2/ + ¥+ (= 8) ) -1 —ﬂ(—&)‘”z];

E: —B’B= —Q, 7:—6,3:—}/, (4.3)
(4.4a)
1/2
(4.4b)
—
between solutions of {4.1) and (4.8):
i:v_,+71/2v+ (_6)”2 ,
z v v
o8 H(/BN" +pb +0/2) @9)

2(71/2¢ +a+ ,},1/2)
provided that neither 8 =6 =0, nor a = ¥ = 0, nor
2+ ay~ "2 4+ B(—8)"""? = 0. These exceptional cases are
considered below.
Lemma 4. 1: PIII admits a one-parameter family of so-
lutions characterized by

(1 — a‘}/—”z)/z =v'/v + ‘}/‘/20 + ( _ 5)1/2/'}’
iff

(4.10)

2 +a,}/—l/2 +B( —5)_”2 =0.
Lemma 4.2: The general solution of PIII in the case that
B =38=0isgiven by
. ¢’ [
1/2 1/2 ? 2
vid+a+y $%/2+ ¢ +c,

=Inz+c,,

(4.11)

where ¢, ¢, are arbitrary constants.
Using (4.3) similar results are obtained for the case that
a=y=0.
Remarks:
1. The results of Theorem 4.2 and the above lemma’s
were first given in Refs. 15, 11, and 33, respectively.
2. One can clearly combine the transformations (4.2)—
(4.4) to obtain new transformations. For example,
combining (4.3) and (4.4) one can derive the corre-
sponding result of Ref. 15. Also note that a finite
number of products of {4.2) and (4.3} yields the
identity.
3. Elementary solutions of PIII can be derived in the
same manner as in PIL
Derivation of the above results: In this case P, = 1/,
P, = — 1/z, P, = (1/2)(av* + B) + yv* + 8/v. Thus the co-
efficient of #%in (2.8) is — (dv® + f)/v.

Then the above coefficient of %2 implies that either d = 0 or £ = 0. In what follows we shall consider only the case f = 0.
{The result of Ref. 15 is derivable by considering the case d = 0). With f= 0 Eq. {2.8) becomes

20dv’ + (bd +ea —d’ —dz= W — (¢ +ez" v —ec

u’=(~dv)u2+[ 2 o

where the last bracket is independent of u. The coeflicient of
u in the above will be linear in v iff dv® + ev is a root of the
numerator. This implies that e = 0. Then, without loss of
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u+[...], (4.12)

{

generality, we can take d = 1 and a = 0, since one can al-
ways “absorb” them in u with the aid of a M&bius transfor-
mation. If e = @ = 0 and d = 1 then the term in (4.12) inde-
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pendent of  is linear in v iff ¢> + § = 0 and
b= — (B + ¢)/cz. Thus, with the above choices of q, ..., f
Egs. (2.6) and (4.12) yield

u=v—2+—b—+%;c=(_6)l/2’b= _(B+C)
v v v (4
(4.13)
’ -1 —1
p=ttl —Om-ar (4.14)
y—u

Substituting (4.14) into (4.13) one obtains an equation for ,
namely,

u" = uu/(W — y)+ - (4.15)
It is then clear that ¥ = 0 is of special interest.
lLy=0
Then (4.15) becomes
2 ' 2 _
w=t_ _ ¥ _ a2—+£2(1 +c———ﬂ)+cu2.
u z ’u  z ¢
Let u = 2 to obtain
z
=2 i 72 _ 2
=2 _ ”_+cL+a(1 +£ B) ~ Z (4.16)
v z z c b
Equations (4.13) (with ¥ = /z) and (4.16) imply (4.5).
2.y#0

Without loss of generality take ¥ = 1. Equation (4.15)
must be, within a Mdbius transformation, one of the fifty
equations mentioned in the introduction. Thus let
u = {4Aw 4+ B)/(Cw + D) to transform (4.15) to

(dw + B)(AD — CB)
[(Aw + B)* — ¥(Cw + D )*}{Cw + D)

w’2 + o,
(4.17)

w”=[2C+

Hence,if A=B=zand D= — C =1 then
w” = (1/2w — 1/(w — 1))w'? + --. Therefore, under the
transformation

u= —(w-+ 1)/ (w—-1) (4.18)
Eq. (4.15) becomes
b_Bw—1) o, 1, w1/ B
w _2w(w—1)w zw+ z (aw+w)
+ 2w, (4.19)

where @, £ are defined in (4.6b). Letting z = (2x)'/? in (4.19)
and using (4.18) in (4.13) and (4.15) the result of Theorem 4.2
follows.

3 2+B(—8)"P—ay="?=0

The transformation (4.14) breaks down if u = ¢
Thenu' + (z7' — b)u — az™ ' must be zero when u = ¥
This implies 2 + B( — )"/ — @y~ /2 = 0. Hence, using
(4.13) one obtains the result of Lemma 4.1.

Using Theorem 4.2 one can obtain (4.4} in a similar way
as in obtaining the corresponding result for PII. However,
we choose to obtain (4.4) using Theorem 4.3, which is now
derived.

1/2
1/2

B. Requiring (2.8) to be quadratic in v
Take, for example, d = f = 0. (We remind the reader
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that our investigation is not exhaustive.) Then, without loss
of generality, b = 0 and e = 1. Hence, (2.8) becomes
1

s[av* —z= "

u=u —¢ +[ Ju+1[ ]

The two brackets [ ], in the above equation contain v quadra-
tically iff
A=y c?+86=0. (4.20)

Therefore, with the above choices of a, ..., f Eqs. (2.6) and
(2.8) yield

$/z=v"/v+y"w+ (=8, (4.21)
WP +a+ gt —gv+ (B +(—8)"7—(-8)"4)
—0, (4.22)

where we have used for convenience the substitution
u = ¢ /z. Equation (4.22) yields

¢'+A”2

— , A= 2 2 :
2(y'¢ + @+ ') ARG

(4.23)

where p, o, 7 are defined in (4.8b). Noting that A ' = 2¢ ‘12,
where

Q=¢"+pp +%, (4.24)

and substituting (4.22) into (4.21) one obtains an equation for
&. This equation, using the fact that

po*+od +7=4r"" +a+y'"?
X[(—8)"*¢-B—(—6)",

takes the form (4 /2 + ¢ ')(4 /% /z — £2) = 0, which
implies

AV /z=1. (4.25)
Therefore, the transformations (4.21) and (4.23) relate PIII
and Eq. (4.25). Using (4.25) in (4.23) one obtains the result of
Theorem 4.3.
1L.p=6=0

Then, using (4.21), (4.23), and (4.25) (where we pick the
positive root of 4 !/?) we have

i__U_+ 2 v= 1/2 ¢ /2
z v y'id+a+y
¢II—¢¢ =0'

z

(4.26)

However, the equation for ¢ is now very simple and it can be
immediately integrated toz¢ ' = ¢ */2 + ¢ + c,. Thus
Lemma 4.2 immediately follows.
2 2+a7/— I/2+B( _8)—~1/2=0

The transformation (4.23) breaks down iff
% + a +y''>=0. But then ¢’ + 4 '/? = 0 which
implies 2 + ay~ "2 + B(— 6)~ /2 = 0. Then, using Eq.
(4.21) the result of Lemma 4.1 is again derived.

3. The transformation from Plil to PIll

This transformation is easily obtained by finding two
sets of {a, B, 7, 8§ } which give the same values for p, g, 7.
Solving the equations defining p, o, 7 for @, 3, 6 (keeping ¥
fixed) one finds
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(_6—)!/2 ﬂ(—) I/Z’B [—(_5_)1/2_ %](77)“]/2,
— 270 p (02 Tp)l/z] 12
a=—|— — L — — L .
P [ 4 2 t 16 4 (7
However, using the definitions of p, o, 7 it follows that
02/16 _ Tp/4 — [a( PN )1/2 +ﬂ7’l/2 + 27/1/2( _ 5)1/2]2.
Using the positive root of (4.27) one finds the trivial result
Z=al7* /v, B=BW'"/7'"),
(_5“)1;2 ( 5)1/2( 112/—112)
However, using the negative root, one obtains the expres-
sions for &, 3, ¥ appearing in (4.4b). Then using
¢l +A 1/2 _ U(’}/”2¢+a + 7/1/2)
A7 +a+7") Prera+y”
and replacing ¢ by (4.21), Egs. (4.4) follow.

(4.27)

V=

V. PAINLEVE IV AND V

reader to derive them himself as a simple exercise of our
method.
Theorem 5.1: Let v(z; @, 8 ) be a solutions of PIV

UIZ

" =—+iv3—+—4zv2+2(zz—a)v +Bv~ . (5.1
v 2
Then z; @, ﬁ } is also a solution of PIV, where
v'—vz—ZZU—(—ZB)”z

U= ;

2v
F=[2-2a+3(-28)"7,
_ 1 (_2‘5)1/2 2
= - —|1 S T 5.2
B S|l tet > {5.2)
provided that
1+a+(—28)"*/2+#0. (5.3)

Theorem 5.2: Let v(z; a, B, 7, § ) be a solution of PV

by =1 1, a 2
Using our method one can easily find transformations v= 2w — 1) v- 50 + 7 oo —1)
which map PIV and PV to themselves, but with different ,
values of the parameters. These transformations were first + E_ -1 + Xy Sv+1) (5.4)
given in Refs. 16 and 17, respectively. Here, for complete- z v z v—1
ness, we give these transformations and advise the intereste(} Then 0iz; &, B, 7, 6 ) is also a solution of PV, where
a8 l/2
v=1- 72,2 i A 25)”2211 1/2 /2 (5.5a)
2’ — 20)'%% + [(20)'? — (= 2B)'% + (= 28)'z]v + ( — 2B)
— - 1 ‘
F= — — [y +(—25) (1 = (=28)" = 2a) )%, B=—ly—(—25)"1 — (= 28)" +(—25)"2)),
166 166
(5.5b)
_ I
7=(=28)"2[(—-2B)"*—(2a)"?],6 =6, Then i(z; &@, B, 7, 8 ) are also solutions of PVI, where
provided that § #0 and 0z, @ B, 7,8) =201/, 2, B, v, b);
(—28)'"2[1—(—28)"7—(2a)'*] #y. (5.6) T=a,f=B7=—6+45=—y+}, (6.2)
Remarks: iz & B, 7,6)=1—v(l —z;a,B7v,8)
1. One can easily ﬁnd Lie-point dlscre.tc symmetries of T=a,f= —y,7= —B5=6, (6.3)
the above equations. For example, if v(z; @, B, 7, 6 ) = _ =
solves PVthenv=v"'z; — B, —a, — ¥, 8)also ‘7(24 a, 7, 6)=1—(1—2p(1/(1 — 22, B,7,8);
solves PV. a,f=6—47=—-BE=—v+} (6.4)
2. When the above transforma?ions break down, i.e., T=v+2z+ -2z
when (5.3) and/or (5.6) are violated then PIV and/or
PV,.jI..lSt as for P.II and PIII, admit one-parameter w( — 2iz-1) @' + -1 z + 1)) - . (6.5a)
families of solutions. K P kP
3. c1';,‘lefnecr11t‘ary sglu';ions of the abgve;) t;(;uations can be a=1\[(— 28) 113, 3= — i (2a)'? + 177,
erived in a similar manner as in PII. ¥ =y +Ku/4, §=6 + KiL/4. {6.5b)
V1. PAINLEVE VI In (6.5) @, I, k, u are defined by
Theorem 6.1: Let v(z; a, B, 7, § ) be a solution of PVI: &= zi A—r—1) y A+x+1z 1
" =L(L+ 1 41 )U,z v 2(z—1) 0z—1) v
2ol v _ilz_f_l)_(_l_+ﬁ) (6.6)
_(L+ 1 41 )v, vy — 1) —2) 2 z—1) 2 4
z z—1 v—z 2z — 1) . P
I=p>+ @1, (6.7)
[a 2 + yiz—1)  bz(z—1) 6.1) . 2
(U 1)2 (U—Z)2 . K=(_ZB)I/2_(2a)I/2_ 1, A=(—-2B)l/2+(2(1)1/2,
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4 (1 K \?
=_~_/_5), =251 (ﬁ —).‘
" K(z 7 v gt 5) 68

In (6.5) we have assumed that
P #0, «#0, v#£0. (6.9)

Theorem 6.2: Let v(z; @, 3, ¥, 5 ) be a solution of PVI and
let @ (z; k%, A, u, v) be a solution of

2 2452
(z — 12022 =i,(<p'2 +I—"‘p)wz, (6.10)
z? z(z — 1)
where
Qo 32N 201 +ul/2— &
’ 2z(z — 1) 2(z — 1)? ’
A (6.11)

v(z+ 1) +%(z+ o+ e =1,

and I, k, A, u, and v are defined by (6.7) and (6.8). The Egs.
(6.6) and {6.12) below express a one-to-one correspondence
between solutions of (6.1) and (6.10)

v=(_(z+1)¢,+ 2% ¢_(z_1)2%)

z zlz—1)
_ 20" I klz+ )P\
X( ; + < +—————22(Z_ 1)) . (6.12)

We have assumed that (6.9) is valid.
Lemma 3.1: PVI admits a one-parameter family of so-
lutions characterized by

r A —k=1) o A+ 1 g
v 2Ae—1) © [2(2—1)+2+4]v
M:O (6.13)
2z — 1) ’ '
iff v =0, k #0.

This result, which is an immediate consequence of theorem
6.2, was first given in Ref. 18. Note that if

2z —1) w
A—k—1w’

then w satisfies a certain hypergeometric equation.

p= — (6.14)

A. Derivation of the above results

In deriving the above results we follow the same logical
steps as with PIII.
1. The transformation from PV to (6.10)

In this case the coefficient of 4 in (2.8) is

(3720 -z + W +2/2) 72
vy — 1)v —2z)

Therefore, it is impossible to choose g, ..., fin such a way that
(2.8) reduces to a linear equation for v. However, by choosing
d = f'= 0, and then (without loss of generality)e = 1,5 =0,
Eq. (2.8) reduces to a quadratic equation for v iff

a=2a)"*/z(z — 1),

c=(—=28)"/z-1)
Then (2.6) and (2.8) become

— 2dvJ — elJ.

(6.15)
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vV +av* —uv+c¢ =0,
2v2+l,?\u—+-6=0,

(6.16)
(6.17)

where;i\, ﬁ, C are known functions of u',u,z. Equation (6.17)
may be simplified if one uses the transformation

¢i+;z

Uu=—-+ 5
z z—1 ziz—-1)
jo _lat(a)?+B+y+6)
K
f=A—A, k#0, (6.18)

where « and A are defined in (6.8). Replacing u in terms of ¢
in (6.16) and (6.17) one obtains

L Ra)? (4 A A
U+z(z—1)v (z+z——1+z(z——1))v
Y Y
LA "o, (6.19)
Av* + Bv+ C =0, (6.20a)
where
__¢ 1 Kz + 1)
A==+ (1+ (z—1) ¢)’
p=ttl, 2 (6.200)
z ziz —1)
g, Kzt _
C=—2¢ +_—_z(z~l)¢ Az

and [ is defined by (6.7). Equations (6.19) and (6.20) are the
analogues of Eqgs. (4.21) and (4.22). Equation (6.20) yields

2 242
v=(——B+_(£.'_ﬂAl/2) 24; A=¢’2+1 —K¢"
z ziz — 17
(6.21)
Substituting (6.21) into (6.19) one obtains
A 1/2
¥ +02=0 (6.22)
zz—1)

where ¥ and {2 are defined by (6.11). (In obtaining this equa-
tion it is crucial to note that 4 and I? — k*® % are common
factors.) Therefore, the transformations (6.19) and (6.21) de-
fine a one-to-one correspondence between PVI and (6.22).
Note that the two different branches of 4 '/? in (6.21) corre-
spond to the two different branches of 4 /2 in (6.22). If one
wants to get rid of the square root in (6.22), one may replace
A4'?in(6.21)by — z(z — 1)2 /¥. Then (6.21) becomes (6.12),
and using (6.12) in (6.22), Eq. (6.10) follows.
2.v=0

The transformation (6.21) breaks down iff 4 = 0. It
then follows (requiring that — B + (z — 1)4 '/?/z is also
zero) that ¢ = 0 and v = 0. Hence, substituting = 0,v =0
in (6.19), Lemma 6.1 follows.
3. The transformation from PVI to PVI

The trick again is to find two sets of parameters |, 53, 7,
6} and {a, B, 7, 6—} which give rise to the same &%, 4, u, v.
Henceitisclear thatiftheset {a, 3, 7,8 ] correspondstox, 4,
u, vthentheset {&, 5, 7,5 } must correspond to — «, 4, , v.
Thus
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2 2 \4 2
v 1 1 (p  « )2 Kl
2 + 2 2 (4 2 4
=5+ (6.23)
4
Similarly for 7. Also solving the equations
(—28)"2+ (2@ = (— 28)"> + (2)"* and

(_ 2ﬁ)1/2 _ (ZC—Z)I/Z —1= — ( — 23)1/2 + (2a)1/2 + 1, one
obtains (2&)'* = — 1 +(—23)"*and

(—28)"? =1 + (2a)"/2. Finally, using (6.12) with v replaced
by v and k by — «, one obtains {6.5a).

B. How to obtain elementary solutions

Using Theorem 6.1, one may obtain infinite hierarchies
of elementary solutions of PVI. As with P11, it is important
to notice that if one starts with the solution v characterized
by Lemma 6.1, one cannot use {6.5a) directly [since in this
case (6.5a) breaks down]; one must first use a Lie-point dis-
crete symmetry to obtain a new solution 5 and then use
{6.5a). We also note that the Lie-point symmetry {6.2) cannot
be used, because for this symmetry ¥ = v (hence if v = 0,

v = 0). If one uses instead the Lie-point symmetry (6.4) one
has the following result:

Lemma 6.2: Let v(z; a, B, v, § ) be the one-parameter
family of solutions of (6.13), where «, 4, i are defined by (6.8)
and v = 0. Use the transformation (6.4) to evaluate (z; a, B,
7,8 ). Then apply to this solution the transformation (6.5a) to
obtain a new one-parameter family of solutions v of PV],
with parameters

Z=—ih— 1P B — i@+ 11,
A LN S SN (6.24a)
4 4
where
=a, f=6-4 7= —BbE=—y+},
and
a, =Q2a)? B, =(-28)"" (6.24b)

Example 6.1: The solution of Eq. (6.13) is in general
expressible in terms of the hypergeometric functions. Hence,
using the above lemma one can obtain an infinite hierarchy
of one-parameter family of solutions of PV1, all of which are
related [through the repeated application of (6.5a)] to these
hypergeometric functions. However, for some special
choices of the parameters a, B3, 7, 8 Eq. (6.13) becomes very
simple. In this case one may, for example, derive infinite
hierarchies of rational solutions. Let us make such a choice
in order to illustrate our results. Leta =8 = 0, y=1/2,
6= —3/2. Then, using (6.8), sk = —1,A=0,u= — 6,

v = 0. Therefore, since v = 0, PVI must admit a one-param-
eter family of solutions characterized by (6.13). Actually in
this case (6.13) reduces to zv' 4+ v = 0 and hence v = 7/z, 7

some arbitrary constant. Now starting with

v=71/2;a=0=0,y=1/2,6= —3/2 {6.25)
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in (6.4), one finds
b=1-rl—z%d=9=6=0F= —2.
Then, using (6.8), either
R=1, A=2 4=2,9=0
or
R=—3, f=—2 p=-2/3, v=16/9.

The first choice used in (6.13) rederives ; however, the sec-
ond choice [used in (6.5)] yields

ozt —2rz+7—1)

5 ;

22 — 31 + 71— |

9 - 1 .1 = 1
g=2 pg-_L1 S_1 §5_1 6.27
=3 A 2 (627

One can verify directly that the functions v, §, and 7, as de-
fined by Eqgs. (6.25), (6.26}), and {6.27), respectively, satisfy
PVIL

Remarks

{1) The transformation (6.4) is the product of the trans-
formations (6.2) and (6.3). Similarly, one can obtain a
transformation as the product of (6.3) and (6.2).

{2) It is worth noting that one cannot use just the Lie-
point discrete symmetries [i.e., Egs. (6.2)—(6.4)] to
generate an infinite hierarchy of exact solutions.
This, which is consistent with Ref. 28, follows from
the fact that a finite number of products of these
transformations yields the identity. For example,
one obtains the identity after repeating the applica-
tion of (6.4) three times.
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In this note we ask for the classes of equations of the second order which can be transformed into
the heat equation u, = u,, . To give a partial answer to the question we express the heat equation
by differential forms and prolong it by the Estabrook—Wahlquist method. This is motivated by the
fact that our analysis is based upon conservation laws for which ideals of differential forms are a
very suitable framework. Necessary conditions are derived for deciding whether a given equation
can be transformed by some invertible point transformation into the heat equation or into its

prolongation. In particular, the prolongation method enables us to understand the connection of

various equations to the heat equation.

PACS numbers: 02.30.Jr, 02.30.Qy, 02.40.Vh

1. INTRODUCTION

The theory of transformation of equations has become a
fundamental tool in the study of nonlinear equations. Lie
groups of point transformations have been used traditionally
for generating solutions from known ones. A prominent ex-
ample for the generation of solutions by Bécklund transfor-
mations is the sine~Gordon equation. Famous examples for
Bicklund transformations connecting different equations
are furnished by Miura’s transformation connecting the
Korteweg—de Vries with the modified Korteweg—de Vries
equation and by the Cole—Hopf transformation linearizing
Burgers equation.

More recently several efforts have been undertaken for
transforming nonlinear equations into linear ones. We men-
tion the work of Flato and Simon (see for example Ref. 1) on
nonlinear representation theory to which the work of Ander-
son, Harnad, and Winternitz on nonlinear superposition
principles seems to be related. See for example Ref. 2.

A different approach has been undertaken by Bluman®
and Bluman and Kumei.* They obtained the following con-
dition: If the equation under consideration has an invariance
generator involving an arbitrary solution of some linear
equation as well as a certain contact transformation then the
equation is linearizable. This is derived from the fact that
invariance properties are injected from one equation into
another by one-to-one mappings. Examples of this are found
also in Ref. 5.

The purpose of this paper is as follows. We know of
various second order equations such as Fokker-Planck
equations, Burgers’, and further remarkable nonlinear equa-
tions like u, = (u~2u,), being transformable to the heat
equation. Therefore, we aim to obtain all equations in equiv-
alence with the heat equation from a unified point of view.
The following analysis will be concerned with conservation
laws while group properties will not appear in our approach.

The heat equation can be expressed by a contact form
and a closed two-form representing a conservation law. This
is not unique since the heat equation possesses many conser-
vation laws. The heat equation can also be expressed by se-
veral contact forms and prolongation forms obtained by the
Estabrook—~Wahlquist method.® The prolongation forms,
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being pseudopotentials, will then be understood as conserva-
tion laws while the heat equation itself appears as integrabi-
lity or closure condition.

An equation is called equivalent to the heat equation if
itis represented by an ideal of differential forms which can be
mapped into the ideal of the heat equation or into its prolon-
gation by an invertible contact transformation. The fact that
conservation laws are transformed into conservation laws by
contact transformations whereas contact conditions are pre-
served provides us with criteria for equivalence.

2. EXTENDED POINT TRANSFORMATIONS

In this section we shall briefly describe the most impor-
tant properties of contact transformations which can be
found in Ref. 7 where emphasis is made on groups of contact
transformations. A concise summary is also given in Ref. 4.
When the number of the dependent variables is greater than
one, there will be no other contact transformation than ex-
tended point transformations. We shall therefore restrict
ourselves from the beginning to point transformations.

Consider the spaces of variables

5= {z|lz = (x,t,u',...,u")}
and

S={Z|Z=X,T,U"...U"}.
We shall study transformations

Kis—S (2.1)
given by
X=X@), T=T), U'=Ula. (2.2)

Let us separate the variables into dependent and indepen-
dent ones. This enables us to extend the spaces sand S tos;
and S by introducing the derivatives

uou;,
and
Ut
We endow the extended spaces with the contact forms
o'=du' —uldx —udt (2.3)
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and
' =dU' - UldX — U%dT. 2.4)

Now we have to answer two questions. How are derivatives
transformed and what happens to contact forms under (2.2)?
First of all, a vector valued function

u(x,t) = (' (x,t),..,u"(x,t )},
is transformed into
UXx,T)=(U'X,T),.,U"X,T)),

where

U'iX,T)=U'lx,tulx,t)), (2.5a)
and

X = X(x,t,ulx,t)), (2.5b)

T = Tix,tu(x,t)). (2.5¢)

From differentiating {2.5a) we obtain

DU =U\DX+U,D.T,

DU =UDX+U'DT (2.6)
where (2.5b,c) has been used and the operators of total differ-
entiation:

D =3/0x + u'.d/3u,

D, =3/t + u,d/du'.

Assuming that the determinant

D=DXDT—-DXD,T
does not vanish, we obtain from (2.6) the transformation of
the derivatives

Uy ={(D,T-D,U'— D ,T-D,UY)/D,

U,=(—DXDU +DXD,U)D. (2.7)
The point transformation K has now been extended to a
transformation between the extended spaces s; and Sy;. In
what follows we shall not distinguish between K and its ex-
tension. The extended transformation will respect the con-

tact conditions. This can be seen as follows. Application of
the pull-back mapping K * to the contact form £2 ‘ yields

K*Q)=(U!, —U\X, —ULT, )’ (2.8)
Thus if a mapping i annuls the contact forms ' then Koj will
annul the contact forms £2

3. CONSERVATION LAWS AND THE ESTABROOK-
WAHLQUIST PROLONGATION OF THE HEAT
EQUATION

First of all we shall formulate the heat equation as an
ideal of differential forms on the manifold s,. generated by

du N dx +du, A dt, (3.1a)
and the contact form
du —u, dx —u, dt. (3.1b)

An embedding i of a two-dimensional submanifold into s is
called a solution of (3.1a,b) if these forms are annulled by i*.
Embeddings i coincide with solutions of

u = u,, (3.2)
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when functional independence of x°/ and 0/ is imposed, see
Ref. 5.

By a conservation law of (3.1) or (3.2) we understand a
one-form on s

o=fdx+gdt (3.3)

whose exterior derivative dw is annulled by an embedding i
whenever 7 annuls (3.1a,b). In particular one-forms whose
exterior derivatives lie in the ideal generated by (3.1a,b) are
conservation laws.

The heat equation has the following conservation laws:

pudx + (pu, — p, u)dt (3.4)
and

pu, dx + (pu, —p,.u,\de, (3.5)
where p(x,t ) satisfies the adjoint equation

P = — D (36)

As far as I know these are the only conservation laws of
(3.1a,b) on s,.. (Polynomial conservation laws such as are
known for equations of Korteweg—de Vries type cannot ex-
ist, see Ref. 8). Some solutions of (3.6) are furnished by the so
called heat polynomials

Dulx,t)=(x — 2td/0x)"°1, n=0,1,.

Instead of (3.1a) we could have used the exterior derivative of
any conservation law for the formulation of the heat equa-
tion by forms.

The use of adjoint equations for obtaining conservation
laws can be generalized to arbitrary linear equations. For
example the equation

u, =au,, +bu, +cu
has the following conservation law:
pu dx + (apu, + (bp — (ap), Ju)dt,
if p satisfies

P = —(ap)xx +(bp)x — cp.

The analysis of the following sections is therefore not limited
to the heat equation.

In order to obtain further conservation laws, we shall
submit the heat equation to the Estabrook—Wahlquist pro-
longation procedure.® A similar prolongation for Burgers’
equation is carried out in Ref. 9 where, however, forms are
not used. Upon introducing new variables y* we prolong the
ideal (3.1a,b) to

duNdx + du, N\dt, (3.7a)
dy* — A*dx — B*dt, (3.7b)
du — u, dx — u,dt, (3.7¢)
dy* — yidx — yidt, (3.7d)

(k being undetermined). Following Estabrook—Wahlquist®
we require dependence of 4 ¥ and B * upon u,u, and the new
variables p*. Then we particularize 4 * and B * so that the
exterior derivative of (3.7b) lies in the prolonged ideal, i.e.,
(3.7b) is a conservation law. After obvious calculations
which proceed in analogy to those given in Ref. 9 we obtain
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A =A47(y) + 43y,
BY=A5(y)—Ai(yu+ A3y, (3.8)

where the following commutation relations must be satis-
fied:

[A 1»-’43] =0, [Az,A4] =0, (3.9a)
(4,,45] = [4,,4,], (3.9b)
[4,,4,] =4, (3.9¢)

The commutator of 4; and 4, is defined by
(44,1 = ALAS — 4145
In what follows the 4; will be assumed to be scalar functions,

i.e., k = 1, whereby equations (3.9) become solvable.
From (3.9a) it follows that

A;=cA,, A,=eA,, c,e=constant.
(3.9b) then leads to

c= —e,
and (3.9c} to

— A v ALA /A, =e. (3.10)

If A, and A4, are determined according to (3.10} we have a
two-dimensional Lie algebra satisfying the commution rela-
tions (3.9). By inserting the algebra into (3.8) we obtain

A=A, + Au,

B= —ed, —edu+ A,u,. (3.11)
Let us introduce the prolonged space

s, = {2,|z, = ,t,u,u, U, 0,0 )}
The heat equation can now be expressed on s, by

(yx —A)dx + (y, — Bldt,

du —u, dx —u, dt, (3.12)

and
dy —y . dx —y,dt,

since by annulling (3.12) by an embedding i the heat equation
is given back as integrability condition. More precisely, the
differential system expressed by (3.12) is

Y =4, (3.13a)
y.=B5B, (3.13b)
U, = U,,. (3.13c)

Here the close relationship between prolongation and
searching for Backlund transformations becomes evident,
see Refs. 6,9. Equations (3.13a,b) can be considered as a
Bécklund transformation with (3.13c) as integrability condi-
tion.

4. EQUIVALENCE OF EQUATIONS TO THE
NONPROLONGED HEAT EQUATION

Let us be given a second order equation in the space s,
and the heat equation in the space S

Ur = Uyy. (4.1)

Following Bluman and Kumei* we shall call both equations
equivalent if their solutions are in one-to-one correspon-
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dence by an invertible point transformation (2.2):
K:is—S.

We shall now derive conditions for equivalence. Let us as-
sume that both equations were given by differential forms.
Then a solution i of the equation under consideration is
mapped into a solution Koi of (4.1). By (Koj)* = i*oK * it
follows that a solution 7 of the equation we are looking for
will annul the forms

K*dU AN dX+dU, A dT)
K*dU— UydX — U dT).

[Here K means the extended transformation (2.7)].
Equation (4.2a) is the exterior derivative of
K*UdX + UydT),

being a one-form on s, while (4.2b) will be annuled by /
whenever / annuls the contact form

(4.2a)
(4.2b)

o =du—u,dx — u,dt,
see (2.8).

This leads us to describe the class of equations in equiv-
alence with (4.1) by a closed two form, i.e., a conservation
law dw' and the contact form w. Conversely we obtain by
analoguous reasonings, that a solution i of the heat equation
must annul

(K ~Y*do' =d((K ~)*e").

This means that (K ~')*w' is a conservation law of the heat
equation (4.1). Therefore, we obtain the equivalent equation
as

do' =d(fdx + gdt),

o =du—u.dx —u,dt. (4.3)
A sufficient condition for equivalence can be formulated
now by using the conservation laws (3.4} and (3.5). We must
have

(K ~'*o' =pUdX + (pUy — p, U)dT
or

(K ~")*o' =pUy dX + (pUr — px Uy)dT
meaning that

o' =K*pUdX + (pUy — pyU)dT) (4.4a)

or
©' =K *(pUy dX + [ pU; — py Uy)dT).
By applying K * to a conservation law
(K "Wo'=FdX+ GdT
we obtain keeping the contact condition in mind
K*FdX+ GdT)= (F(K)D X + G(K)D,T)dx
+ (F(K)D,X + G (K )D, Tdtr.

(4.4b)

[Here F(K') stands for the mapping composed of K and F,
etc.]. Therefore, equivalence of (4.3) to the heat equation now
means that

f=FK)D,X +G(K)D,T,
g=FK)DX+ GK)D,T, (4.5)

where F and G are given by some conservation law (4.4a,b)
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and p solves

Pr= —Pxx-

To sum up, we have obtained the following condition
for equivalence. An equation given by (4.3) is equivalent to
the heat equation if there exists some conservation law and
an invertible point transformation such that (4.5) holds, On
the other hand, (4.5) can be used to determine wide classes
being in equivalance with the heat equation .

Example I: we use (4.4a) withp = 1, i.e.,

F=U, G=U,.
Consider the transformation
X =xexp(t), T= exp(2t)/2, U= uexp(— t),

and extend it according to (2.8). Then (4.5) yields
f=u, g=u, +xu,

giving the Fokker—Planck equation
U, = Uy, + xu),

as an equivalent equation.
Example 2: We use (4.4b) with p = X, This means

F=XU,, G=XU; — Uy.
Let us try the transformation
X=u, T=1t U=x
Equation (4.5) together with (2.7) then gives
f=u,
whereby

g=(—1/u,),
u, =ux*2uxx

becomes equivalent to the heat equation.

5. EQUIVALENCE OF EQUATIONS TO THE
PROLONGED HEAT EQUATION

Let us consider the prolonged heat equation in the space
Sy yielding

(Yy —A)MdX + (Y, — B)T, (5.1a)

dU—- Uy dX — U, dT, (5.1b)

dY — Y, dX — Y, dT. (5.1¢)
By (5.1) we express the differential equation, see (3.12),

Yy =4,

Y, =B, (5.2)

U, = Ugy.

Let us now find equations in equivalence with (5.2) by the
same procedure as in the foregoing section. Here, however
the only conservation law at hand is given by (5.1a). We con-
sider a one-to-one point transformation K given by (2.2) with
u' = u, u* = y. Next, we apply the pullback X * to the con-
servation law (5.1a) of (5.2). To the form thus obtained, we
add the contact forms on s, obtaining an equation given by

K*(Y, — A)dX + (Y, — B)dT),
du —u,dx —u, dt, (5.3)
dy —y.dx—y,dt
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Let Uy(K ), U (K}, Yx(K)and Y,(K ) be given by (2.7) then
we obtain for (5.3)
(Yx(K)— 4 (K)D, X + (Yr(K) — B(K)D, T)dx
+((Yx(K)—~ A (K)DX + (Y-(K) — B(K)D,T)d,
(5.4).
du—u.dx —u,dt, dy—y.dx—y,dt

Solutions of (5.1) and (5.4) are now in one-to-one correspon-
dence by K. Stated otherwise, solutions of (5.2) are in one-to-
one correspondence with the solutions of the equation

(Ye(K)—A(K)D, X + (Y(K)— B(K)D, T=0,
(5.5a)
(Yx(K)—A(K)D, X + (Y,(K)— B(K)D,T=0,
(5.5b)
and its integrability condition. Equations (5.5a,b) can again
be used for deriving classes of equivalent equations.
Example 3: we use the following transformation X

X=x, T=t U=U(u)y,
Extending K by (2.7) and inserting it into (5.5) yields

Ve — (Ai(9) + 42 y) Ulu) y) =0,

Ve — 1 —edy(y) — edy(y) Ulu)y

+ 4,(¥) DU (u) y)} =0,

where 4, and A, satisfy (3.10). Upon particularizing 4, = 1,
A, =0, and e = 0, we obtain

ye =Ulu)y,

yo=(U'w)u, + T(u))y, (5.6)

u, =u, +2U@uu, +U"u)u2/U'u).
Thus we have obtained equivalence of (5.6) to the prolonged
heat equation by means of a Cole—Hopf transformation

x=X, t=T, u=U"'U/Y), y=1,

which appears in our setting as an invertible point transfor-
mation. Obviously, (5.6) coincides with Burgers equation if
we set U(u) = u.

Example 4: consider the transformation K

Y=y.

X=y, T=t U=Ul), Y=x
From (2.7) it follows that

Uy =U'u,/ps

Up=U'u, — U'u,y/y,,

Yy =1y,

Yr= —y/y.

By inserting into Egs. (5.5) we obtain the equivalent equation
Ve = 1/(4:(x)U () + 4,(x)),
y, = — Ax)U (whu + edy(x)U (u)/(Ax(x)U (u) + A,(x))
+ e, (x)/(Ax)U (u) + 4,(x)),
(— 1/(Ax()T () + 4,(x)), = (Ax)T (),
— ed ()T )/ (Ax)U () + Ay(x).
Upon particularizing, we obtain remarkable diffusion equa-

tions. Setting e = 0 and A, = O we can satisfy (3.10} by arbi-
trary functions 4,. This gives
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(= 1/Ax)U (), = (4,x)U " (w)u,),.
Examples important in nonlinear diffusion processes are ob-
tained by setting

U= exp( — au),
and

U= —u', 4,=1,
yielding

lexplau)/A,ix)), = (Ao(x)exp( — aulu, ).,
and

u, = u),.
Various other methods for linearizing these equations can be
found in Refs. 10-12.

Example 5: we choose again e = 0, 4, = 0 and A4, arbi-
trary. The transformation

X=x, T=y, U=U(u),
is extended by (2.7) to

Ux = (5.0 (wu, —p, Ut )y,

Uy, =U'uu,/y,,

Yy = —y./y0

Y, =1/,

Upon inserting into (5.5) we obtain

Y=y

2047 J. Math. Phys,, Vol. 23, No. 11, November 1982

Yo = Uu)/U'u)dyfe)U (uu, — t,),

Ve = 1/A0)T ) Aoft O (s, —u,).
By setting 4, = 1 the following integrability condition is ob-
tained

— U uPU (wu, + (U )+ Uw)U ), — U'(uu,,
+ (U @)U () — U @)U (u)u? + Uu)U " (), u,
—U"(upu =0.

The restriction U = u finally yields the following equation
equivalent to the prolonged heat equation:

— w?u, +2uu,, —u, =0.
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Space-time memory functions and solution of nonlinear evolution equations
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A new approach is presented for solving a certain class of nonlinear partial differential equations.

A space-time memory function A (r,t )is introduced to exactly convert a given nonlinear evolution
equation into the following linear form: (3/3¢ ) f(r,t) = 2 (r) f(r,t) + Sodt 'fdv'A(r —r't —t') fir',t').
A Markovian integro-differential operator £2 (r) and the memory function A (r,z) reflect the
nonlinearity, and are determined depending on a given initial condition. The approach is useful if
higher-order memory functions associated with A are insensitive to approximation. The
Korteweg-de Vries equation is treated as an example. For certain initial profiles the memory
function is shown to be identically zero, and we find exact /inear partial differential equations
leading to the single- and the two-soliton solution. In the case of the three-soliton solution, the
second-order memory function vanishes exactly, and A {r,¢) is found to be a single exponential

function of .

PACS numbers: 02.30.Jr, 02.60.Nm, 02.50.Ga

I. INTRODUCTION

We have developed in a previous paper’ a new approach
to nonlinear initial-value problems on the basis of the fact
that a nonlinear ordinary differential equation for a variable
x(t) can exactly be converted into a linear non-Markovian
equation

ditx(t)zwx(t)-{— L'A(z—z')x(t')dt', (1)

where a renormalized frequency » and a memory kernel
A (t — t'}reflect the nonlinearity and are determined in terms
of a given initial value x(0). Since the linear equation (1) is
easily solved, the problem is reduced to determination of the
memory functions A (¢ ). It has been shown that higher-order
memory functions A, (¢ ) associated with A (¢ ) are insensitive
to approximation, and a simple and drastic approximation,
suchas A, (¢} o8 (¢)foradissipativesystem' and A, (¢ )~Ofor
an oscillatory system,” yields statisfactory results.®

In this paper we extend the approach to space-depen-
dent cases, and consider a quantity f'(r,t ) which evolves in
space and time according to a nonlinear partial differential
equation. The extension to the space-dependent case is, how-
ever, not unique. The simplest way would be toregard r to be
merely parametric; then, as mentionedin Ref. 1, f(r,t }obeysa
non-Markovian, but spatially local, equation of the form (1)
withw and A depending on the parameter r. An early work*
on the memory function formalism in classical liquids is
quite suggestive in this respect; namely, a natural generaliza-
tion of Eq. {1)is toreplace x(¢ ) by a vector f(t ) whose compon-
ents f(r,r ) are indexed by a continuous parameter r. Thus, we
have a non-Markovian and spatially nonlocal equation

) L
& fen) =20 fen) + | dr

XJ dr' A(r —r't —t') flr't") (2a)
O (r)flr,t) = J.a)(r —r)f(r't)dr. (2b)

We have assumed here that the system is spatially homogen-
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eous and infinitely extended. In contrast to the classical kine-
tic theory, where the frequency “matrix” o{r — r'} is unique-
ly determined by virtue of Mori’s projection operator,” there
is no such unique way of determining w(r — r’) in the present
deterministic systems.® Namely, Eq. (2a) givesatr =0a
Fredholm integral equation for w(r),

%f(r,O) = J‘f(r — ' ,Ojw(r')dr, (3)

which does not necessarily have a well-behaved unique solu-
tion; when the original evolution equation contains linear
terms in f(r,z ) and in its spatial derivatives, as is often the
case, the function w(r} should involve a Dirac delta function
& (r) and its derivatives. We therefore assume a simple linear
integro-differential operator for £2 (r} so that Eq. (3) is ful-
filled.

Assuming that an appropriate solution exists to integral
equations like Eq. (3}, we can apply the formalism presented
in the previous paper' to the space-dependent cases as well to
derive Eq. (2a). We extract the linear part £2 (r) f(r,¢ ) from
df (r,t)/dt. We then treat the residual

filrt) = %f(m )= 20 £ (6.0,

which is nonlinear in f, as a new dependent variable, and
consider the nonlinear equation gf /dt = £2f + f, for fas a
linear equation for fand f,. An evolution equation for f] is
constructed to define another dependent variable f5(r,t ),
and so on. We thus convert the original nonlinear partial
differential equation for finto an infinite set of linear integro-
differential equations for f; f}, f5,... . The irrelevant higher
variables £, f,... are then eliminated to obtain the single
closed linear integro-differential equation {2a). A second-
and higher-order memory functions are associated with A,
and the Fourier—Laplace transform A (k,z) of the memory
function is found to be given by a sum of products of infinite
continued fractions in z.

The usefulness of the present approach depends on
whether or not the memory function is easily amenable to
approximation. As an illustrative example we treat the
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Korteweg—de Vries (KdV) equation. Several exact methods
have been developed to obtain soliton solutions.” A bilineari-
zation method has been given by Hirota.® We now study a
linearization method. The structure of the linear equation
(2a) varies according to the initial profile [note that £2 (r) de-
termined by Eq. (3) depends on f(r,0)]. We find a first- and a
third-order linear partial differential equation leading exact-
ly to the single- and the two-soliton solution, respectively;
the memory function A vanishes in these cases. Equation (2a)
with a single exponential memory function, on the other
hand, gives the exact three-soliton solution; the second-or-
der memory function vanishes in this case.

In Sec. II the linear equation (2a) is derived and a gen-
eral formula for the memory function is given. In Sec. ITI the
KdV equation is treated. The final section is added for re-
marks.

Il. MEMORY FUNCTION AND LINEARIZATION

Consider a nonlinear partial differential equation

4 (f;f;»f;:!f:v’f;’f;cx ’fxy""!f‘tx""!.ftxx ,...,l‘,t) =0 (43')

subject to an initial condition

f{r,0) = a(r)s£0 (4b)
and to appropriate boundary conditions. Here, @ is a nonlin-
ear function of fand its partial derivatives f,, /. ,..., and may
explicitly depend on the space and time coordinates
r = ( x,y,z} and t. We have assumed that f(r,0)540 and that
Eq. (4a) does not involve the second- and higher-order de-
rivatives with respect to z. We derive in this section the linear
equation (2a) from Egs. (4a) and (4b) along the line of reason-
ing of the previous paper.'

We extract from f, the linear part (2b) as follows:

fir) = fw(r— ¢) £, (et ). (5)

To determine w(r) we require that the residual f, vanish at
t = 0. Then,

a(r) = Ja(r — r)o(r')dr’, (6)

where a(r) and a'"(r) = £, (r,0) are given by Eqs. (4a) and (4b).
We look for a solution to the integral equation (6) of the
following form:

olf) = 3 + 08 (1) + 0" £ ofr) + -, )

where @(r) is a well-behaved function. Assuming for simpli-
city that 0”, ©",... are constant, we rewrite Eq. (6) as
a’(r) = f&(r —ra(r)dr’ + 0%al(r) + o' gr—a(r) +

= {2 (r)a(r), (8)

where the second equality defines the operator £2 (r). We sup-
pose that the unknowns @(r),0”,@'”,... can be determined by
Eq. (8) so that the sum of the derivatives in Eq. (7) terminates
at a certain low order. Equation (5) then becomes

ft(r’t) =1 (l‘)f(l‘,t) +fl(r’t ), 9)
and the residual f, is now defined by
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filrg)=filee) — 2(r) fle,e). (10)
As mentioned already, we regard the nonlinear equation (9)
for fas a linear equation for fand the new dependent variable
fi- An evolution equation for f] is found by differentiating
Eq. (10) with respect to ¢. Extracting linear terms in fand f;,
we write

gfl(r,z) = faw(r )it
+ le(r —r) fir',t)dr’ + for,t). (11)

We require that f5(r,0)=0 to obtain an integral equation for
alr),

alr) = fa(r — ra,r')dr, (12)

where a(r) = df,(r,0)/3t is given in terms of the initial pro-
file a(r). We assume that a solution & ,,(r) can be found in a
form similar to (7). The f, term in Eq. (11), on the other hand,
can uniquely be separated by decomposing df(r,? )/dt into
terms of different orders at the point # = 0. A term of order 0
has already been extracted. Let fi(r,? ) be of order v, at the
zerot =0, i.e.,

f](r,t) — al(v,)(r)t v, + al(v. + ”(r)t vi+1 + ; (13)
a,"(r)5£0.

We require f, to have no term proportional to ¢ ", which, if
any, should be included in the f; term. Comparing the terms
of v, th power on both sides of Eq. (11), we obtain

Vl>ly

vy + g™+ Vfr) = fa.o(r — r)avi(r) dr’

+ fal‘v"(r —ro,(r')dr, (14)

where a™(r) = [3"f(r,0)/3¢ ' ]/v,!. We again assume that
@,(r) can be determined from the integral equation (14). The f
and f; components of df,/dt have thus been extracted, and
the residual now defines the new dependent variable f,(r,? ),
which is of order v,50, v, at the zero ¢t = 0.

We further construct an evolution equation for f, and
define another new variable f5(r,? ), and so on. In general, we
introduce a higher variable f,, (r,? ), which is of order v, > 1 at
the zero ¢ = 0, and which does not contain terms proportion-

altoz ™, 1<m<n — 1. Note that a higher variable is not
necessarily of higher order at the zero than the lower varia-
bles. Decomposing df,, /dt into terms of different orders at
t =0, we write

L =3 [awle—r1fule i
+ fwn (r— )£ e+, ()
n=0,1,,..,15)

where f, = £, a,,, =0, and v, = @. Denoting that a'/(r)
= [f.(r,0)/8t ¥] /4, and comparing like powers of t on
both sides of Eq. (15), we have
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alr) = Ja(r —r')a,,(r')dr, (16a)

(Vi + Va,"" )=

m' =0

+ fam‘vml(r —ra,,,(r')dr
m=12..n—1,16b)

Ay [ — 1')a, ()T

n—

1 N
)y f e (£ = 1), (0N
0

m =

“]

which are integral equations determining «,,...,&,,,, _ ;, and
w, successively. Here, we put «,,,,, = O for those m for which

v, + Da,™ " r) =

a,,("”'(r —r'jw, (r')dr’, (16c)

v, <v, —2 (17a)
or
1 1) (17b)
since df, /dt does not contain terms of these powers. We
again assume that Egs. (16a)—(16c) have solutions of a form
similar to (7).

We now have an infinite set of linear equations (15) with
initial conditions

S0 =afr), f,(x0)=0, n>l (18)

In terms of Fourier-Laplace transforms

Jok,z) = J dre J dr ™, (rt) |
o]

we readily obtain the solution

v, =v,— v, — L.,v, _

k,2) = Z A fakz), n>l, (19)
m=0
where
Amn(k)z) = En(k!z)[&nm(k) + An+ lm(k’z)]
:E&nm +5n5n+l&n+lm + (20)
E. k) =1/[2—-a,k —A, k2] (21)

The first equation in Egs. (15), i.e., Eq. (9), then gives Eq. (2a)
with the space-time memory function A (r,z ) = A ,,(r,z ) given
by the inverse transform of A ,(k,z), which is a sum of pro-
ducts of infinite continued fractions in z.

Considerable simplification of the above results occurs
when, as is often the case, the nth variable f, is of order » at
the zero ¢ = 0 for every n. Then, since v, = n, we see from
Eq.(17a)thata,, = Oform<n — 2. Hence, the variable f, is
coupled only with f, _,f,,andf, , |, and the memory func-
tion A yk,z) = = l(k 2)c0(K) is given by the single infinite
continued fraction =,.

The nonlinear effect can thus be converted exactly into
the linear space~time memory effect. The memory function
is, however, expressed in terms of the infinite continued frac-
tions, and an approximate truncation is needed in general.
We expect that there are many problems in which the high-
er-order memory functions become insensitive to approxi-
mation with increasing order, as we have seen in the space-
independent cases.'? In an example discussed in the next
section, it is shown that the memory function A, or the
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second-order memory functions A,, and A,, can be made to
vanish exactly by an appropriate dependent variable trans-
formation.

. EXAMPLE

Let us consider as an illustrative example the KdV
equation

u, +ouu, +u,, =0, (22a)
which exhibits & solitons for the boundary condition
u( + o,t) = 0 and for the special initial profiles’

u( x,0) = 2k°A sech’,kx, A= IN(N + 1), (22b)

where we have assumed for simplicity that u( x,0) contains
only one parameter «. Several exact methods have been
found for solving nonlinear equations like Eq. (22a). Hirota
used a transformation

u(x,t) =2 :—; Infix,) (23)

to bilinearize the KdV equation (22a) and to obtain the exact
multisoliton solutions.® We now examine the linear equation
(2a) for the variable f( x,¢ ) introduced by Hirota.

It is convenient to rewrite Eq. (23) as

Sflx,t)= exp(—;—- fj 3 dx' J‘X,w ax"u(x",t )), (24)

where an arbitrary factor of the form exp{C,{z }x + C,{# )} has
been omitted to avoid unnecessary complications. The initial
condition for fis

f(x,0)= {1+, (25)
where K = 2«. Our first equation is
2 flxa) =200/ (x0) + fil ) (26)

It follows from the requirement f,( x,0) = O that
— KA [1 + (34 — 1)e* + 41 + &)~

=02 x)(1 4 <. (27)
It is seen that (2 is a differential operator
3 av (28)
2(x)= a, .
( ) VE::I axv

ForN=1(4 = l)wehavea, = — K*> — Ka, — K *a, with
arbitrary @, and a;. The residual £, vanishes identically, as
shown in the Appendix. Hence, putting, say, a, = a; =0,
we obtain an exact linear equation

d
Ef[xrt)

which is subject to the initial condition f( x,0) = 1 4 exp Kx.
The uniquesolutionf( x,t) = 1 4 exp K (x — K ’t)givesthe
well-known single soliton solution u(x,t ) = 2«” sech’«(x
— 4«°t). Another choice for the arbitrary constants a, and
a, yields the identical result.

For N2, on the other hand, we obtain

= K2 fxa) (29)

2
if(x,t) = (21(2__‘4__,?__ — 3K_A._‘9_2
Jr A—2 ox A—20x
2D Al Ain) (30)
-2 dx®
Takeo Nishigori 2050



It is shown in the Appendix that

filx,t)=0 (31)
for N = 2,(4 = 3). We thus obtain the following exact linear
equation:
& > )
_— +2— x,t) (32
5 +225) /(%) (32)
with the initial condition f{ x,0) = (1 4+ exp Kx)*. The solu-
tion is

f( x,t ) — 1 + 3er — K3t + 3e2Kx — (2K )t + e3Kx — 9K’t, (33)
which gives the two-soliton solution.

For N #1,2, the residual f; no longer vanishes, and the
memory term appears. For N = 3, for example, we have

%f( x,t) = 2(x)f(x) +fi %),

d ( , d
9 fxt)=(6K2-Z —9K
azf(”) ox

(34)
-j—tﬁ(x,r) — A(X)f(xt) + @1 fil x:8) +fo{ ),

corresponding to Eq. (15). Here, {2 ( x}is the differential oper-
ator in Eq. (30) with4 = 6,0, = — 18K’ and 4 (x)isa
sixth-order differential operator

A(x)=27 3 B,

v=1
B,=20K%B,= —127K*/3,B,=31K>,
Ba= — 121K%/12,B5=3K /2, Bs = — 1/12.
It is seen in the Appendix that
fol x,2)=0, (36)
which truncates the infinite chain of equations (15) exactly.
The memory function takes the form

av
g 35
P (33)

A(xt)=27e" 26: B8 x), (37)
and Eq. (2a} becomes

a

Ef( .X,I)

=0(x)f(x,t)+ f e =4 (x) f( x,¢"\dt, (38)

which is subject to the initial condition
f(x,0) = (1 + exp Kx).® The solution is easily found with the
aid of the Laplace transform in ¢ to be

f( X,t) =1 + 6e1\'x——K‘l+ 15e2Kx—8K'I+ 10e3Kx

X(e—‘)K l+e~27K z)_+_ 15e4Kx—28K-1+6eSKx—35K‘1
+e6Kx—-36K"t
b

which gives the three-soliton solution.’

The multisoliton solutions for N = 4,5... will be ob-
tained in a similar way. If ¥ is not an integer, however, an
approximation is necessary for the memory function. The
solution in this case has been found numerically to include
an oscillatory tail.” Such a solution may well be accounted
for in the present formalism by a simple oscillatory memory
function.? An approximate memory function is also neces-
sary when some perturbation exists to the pure soliton equa-
tion (22a). If the perturbation is dissipative corresponding to
actual experimental situations, it seems worthwhile to try a
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simple damping memory kernel.' The usefulness of the lin-
ear equation (2a) with these modeled memory functions will
be discussed in a later paper.

IV. REMARKS

It should be mentioned that the dependent variable
transformation {23) plays a crucial role in the analysis of the
preceding section. It is thus important in the application of
the present formalism to find an appropriate change of the
dependent variable so that the memory function A becomes
insensitive to approximation [we may even put A~0 in Eq.
(2a) to obtain a good zeroth-order approximation]. We hope
that such an appropriate transformation can be found in
each nonlinear problem.’

Several authors'®!'! have recently used a similar ap-
proach based on the linear imbedding of Carleman,? al-
though they are all concerned with space-independent cases
discussed in the previous paper.' Their approach differs
from ours in that they do not consider the renormalization
and the coupling of a variable with the lower-order ones, and
hence do not convert an infinite set of linear equations into a
single closed equation like Eq. (1), which corresponds in sta-
tistical-mechanical systems to Mori’s generalized Langevin
equation.”'? Thus, our approach, if applied to the stochastic
process treated in Ref. 11, gives the result identical to that'*
of the Mori formalism.

APPENDIX

Let us first prove f,( x,¢ }=0 for the single-soliton case,
where /| is defined by

Alxt)=fi —a [, —ayfoo — Q3 frne (A1)
witha, = — K? — Ka, — K a,. Sincef,( x,0) = 0, we show
that

afl
fix0)=0, n=12,., (A2)
oat”

to complete the proof. A direct proof of Eq. (A2) from the
KdV equation requires all the derivatives d "u( x,0)/3t *,
which are difficult to calculate. A simple way is to calculate
the time derivatives of f, instead of u, by making use of Hiro-
ta’s bilinear equation®

J
S Ve ]

_fx(f; +fxxx)+3(f)2(x —fx.f;(xx)ZO (A3)
We now verify by mathematical induction that
a,{x)= S f(x0) = (~ KPes (A4
t n

For n = 1 Eq. (A4) follows from Eq. (A1) at = 0. Assume
that Eq. (A4) holds for n<k. Then, differentiating Eq. (A3) k
times with respect to ¢, and putting ¢ = 0, we obtain

d " ! "
az(ak+1+ak J—alag, +a,")=0, (A53)

where a = f( x,0) and the prime denotes differentiation with
respect to x. Dividing both sides of this result by %, and then
integrating from — oo to x, we have Eq. (A4) with
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n =k + 1, and thus Eq. (A4} is verified. On substituting Eq.
(A4) into
8” 7

”
’ 'I.f}( X,O) =4, — ala:z —aa, —asa,,

we obtain Eq. (A2).
In the case of the two-soliton solution, on the other
hand, /] is defined by

flxt)=f, = 6K°f, + IKfo — U
The left-hand side of Eq. (AS) is now equal to
( _ K3)k‘54'9kK 4(e3l(x + zede + eSKx),
and we find in a way similar to that in Eq. (A4)
a,(x)=(— K3 4 3.8"*% + 9 "e3k) (A6)
forn = 1,2,... . Hence, we have 37/ x,0)/Jt ” = 0, which im-

plies f,( x,t )=0.
The identity (36) for

Llxt)=f, —2{x)f; —A{x)f—w)(f, — 2f) (AT)
can be proved similarly by combining
a,(x)=(—K?3'[6e** + 8".15¢*"* + (27" + 9 ")-10**~

+ 28" 15¢*F* 4 35M6e°% + 36"%***], n>1, (A8)
which is found by mathematical induction, with Eq. (A7) to
obtain

g
dr”

.f?,(xvo):Os nxl.
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It should be mentioned that in this simple illustrative exam-
ple Egs. (A4), (A6), and (A 8)directly give the solutions f{ x,t ).
In actual problems, all the higher-order coefficients a,, are
unnecessary {and difficult to calculate); we need only a few
lower-order ones to obtain the a,,™(r)’s in Egs. (16a)—(16c).
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The possibility for physically general quasilinear differential systems to have discontinuous
solutions or solutions with discontinuous derivatives is investigated using the method of

asymptotic regularizations.

PACS numbers: 02.30.Jr, 02.90. 4 p

1. INTRODUCTION

It has been shown (Ref. 1) that asymptotic regulariza-
tions may be used to obtain conditions for infinitesimal
shocks in a general relativistic context. A nontrivial example
of this has been given in Ref. 2. We show here how the meth-
od can be used to obtain discontinuity conditions for a “phy-
sically general” quasilinear first-order differential system
that is, a first-order system equivalent to a fourth (at most)
order system. The similarity with Choquet-Bruhat’s work
(Ref. 3) will be noted although, as indicated in Ref. 1, it is
only fortuitous. We apply the theory to a general system
representing a single fourth-order equation for one unknown
in two variables.

2. A LOOK AT THE SYSTEMS STUDIED

Let £2 be a neighborhood of an /-dimensional manifold
V,, coordinatized by the real-valued functions x *

(A =0,..., 4 — 1). All Greek indices will have this domain of
definition.

On this neighborhood we will try to find the conditions
to be satisfied by a set of functions #' (i = 1,...,N as for all
other Latin indices) in order for them to be solutions of the
first-order quasilinear system

o’
x4
having discontinuities across a hypersurface X defined by
the equation ¢ (x) = 0, ¢ a regular function of the coordi-
nates.

Itis known that these general systems of first order may
be used in lieu of arbitrary order quasilinear systems simply
by introducing supplementary dependent variables (Ref. 4).
For example, the wave equation in a single dimension

2 2
Q_(ﬂ dy -0

L7 (u) = a(x,u) + bix,u) =0, (1)

ar? dx*?
can be put into the first-order form
z=4dy/ot,
w = dy/Ix,
@ _cadw
at Ix

In that case, we say that y(z,x) is the fundamental (de-
pendent) variable and z(z,x), w{r,x) the supplementary (de-
pendent) variables.

This way of putting things has a radical impact on the
way asymptotic regularizations will have to be defined for
solutions with discontinuities for systems of the type of Eq.
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{1) replacing higher-order systems.
Indeed, let us assume that all the regularizations have
the form

W= o u(xod) 2)

and that the fundamental dependent variables are labeled by
the first p indices. Then if the original higher-order system
generating (1) is of order higher than 2, there will automati-
cally be an index value / > p such that

U= i o "W (x,08), (3)

qg= —L
L a positive integer.
For example, if the uniform beam equation

*u' u'
=7 —K T 0 4)
is studied, the corresponding first-order system could be
W= a—ul,
ot
= @i,
dx
ut = ou’ R
Ix
W= u’ ,
ax
o
at Ix ’

(although this is not strictly equivalent).
Since both ' and u* have the form (2) we have

S aul
—9q 2[ s = 2 = —
qgoa) u(tx.wd)=u o
:5; S o~ u,(t.x,00 )
g=0

= a)u(l)’¢,x + z o q(utli,x + u(1] + 1¢,x )
g=0
(5)
In this example, L = 1 and

v, =u, . +u, ¢, forg>0,

v_,= Ué ¢‘x *

Equations of type (2) are inadmissible in the most gen-
eral case since they force the v,'] ’s, g < 0, to be zero, which has
nothing to do with the original higher-order equations. This
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isillustrated in the beam system by the fact that wu ¢, x (i.e.,
@v_ ) must vanish, that is,
uy =0.

This cannot be acceptable since introducing
u'= 3 o Ut x, 0d)
q=0

directly in (4) cannot yield this result.
Since we cannot avoid the appearance of expressions of
type (3), we must replace (2) by a more general formula

U= _2 La) Yl (x, wd), (6)

where L is a positive integer (in each particular problem the
unused u;, are considered to be identically zero).

Once this change is made one realizes that it will not be
possible to expand the a/* and b7 as infinite integral series
around a given #} as this is done in Ref. 4. Expressions such
as

al*x,u) = a*x, o) + aifu” — ug)

+ Jaii (" — )" — 4g) + ... (7)
bilx,u) = b7 (x,uo) + b (u" — ug)
+ 1b i (u” — Ug)u* — ug), (8)
where
da*
a = _é;"_ {x,u0) (9)

will not be used in the general case since the terms nonlinear
in (4" — u}), if these series are not all terminated after a com-
mon finite number of terms, introduce in (1) an infinity of
expressions starting with w” ’s, the P 'x being various positive
integers. Since we will later use a limiting process as @ goes to
infinity this should not be allowed to be since from (1) one
would obtain an infinity of equations from these w” terms
which would all have to be satisfied independently at the
order at which %, is approximated.

On the other hand, truncating (7) and (8) to finite poly-
nomials in (4" — %) from the outset excludes interesting
cases such as the one developed in Ref. 2. This leads us to the
following classification: We shall group the #*s in such a
way that those having a development (6) which do not con-
tain positive powers in @ have suffixes 4 in the range 1-M.
Equations (7) and (8) for @’*’s and b ”’s following these lines
are then those for which all the a;7_, and a}; , contain a
common maximum set of indices Ak ... n larger than M.

For example, if we suppose that this number is 2, then
the maximum number of indices of the group (Ak...n) which
will be greater than M in a’, , will be 2. Since these a7,
are multiplied by {u* — %}) terms in (7), we then have only
two of these for which the representative sum starts at 2L
instead of w*. Hence each is a series starting at most at w?~.
The complete a/* has thus as maximum power of w the in-
teger 2L, and consequently we do not have an infinity of
equations to satisfy [the same is true of the b,’s hence for the
system (1) as a whole).
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3. TRACTABLE SETS OF EQUATIONS

It would have been desirable, after these changes to
have (1) written down in expanded form with respect to pow-
ers of w. However one can easily realize the fact that thisisa
practical impossibility for the general case, where one finds
indices A, k, ..., n large than M in all terms of (7) and (8).
Indeed, in that case one could not obtain the full form of the
coeflicients of the positive powers of w, these being then the
sum of an infinity of different terms coming each from a
(u* — al)u* — @k) ...(u" — ) product.

We are thus led to consider only particular series, more
precisely those which do not contain indices 4, &, ...,  larger
than M soon past the first few terms of (7) and (8), this for low
values of L. We will be guided in this unavoidable choice by
the equations of physics which are, as far as we know, of
order not greater than four. The fundamental variables «"
being such that Ae{1, ..., M |, one then obtains L = 3, the
third derivatives starting with an @3 at most.

As for the position of the last terms in (7) and (8}, the
choice is even more arbitrary. Considerations of systems
such as the one given in Ref. 2 leads us to limit ourselves to
a!*s which are polynomials of degree 2 in the «”’s, J<M and
degree 1 in the #”’s,J > M. The b 7 will be restricted to degree
2 with respect to the u”s, J > M.

Thus we will have

=3 o ulx wd), (10)

g= -3
and for a* and b’

a(x,u) = a(x,4,) + aj(u" — u5)
+ Yo (W — g )u* — ug) (11)
b7 (x,u)
= bJ(x:ﬁo) +b iJ.(uh — U5} + 1b ik(uh - Eo)(uk - 17(')‘)

+ 4 b (0 — Th) " — @) u™ —uf) + ... (12)
where the undescored indices are less than or equal to M and
g is independent of we.

4. EXPANSION OF THE EQUATIONS

Substituting expressions (11) and (12} into (1), grouping
together the terms in the various powers of @ and limiting
ourselves to those of order one at most with respect to the
norm || ||, defined in Ref. 1, we get the following equation in
which

Ty=up — uly: (13)
o’ {agut Wil )+ o®lagu” s, et L)

h ; J ok Lk
+u' Ut L)+ bt sut )

+ o’ {al ', Fu L)+,
+ L)+ U usl)

+%b1k(uh73uk»2 +u" ut )

+o*{afiu" Wy +uol) W

+u L)+ ul (' sa F U5 0)
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i JA JAmh JA mh=
+u'_slilag + ayig + La loilg)

+ébik(u"_3u"_1 +uh~1ulf-3 'f‘uh-zuk—z)}

+ o {alf(u J(up, + U L)+ W,
+ o) +ut (W, U L)

+ (' 3a t u'_,l, )(a.g + a{:ﬁg

+ Lajt weus) + bru

i JA, h JA (, h=k kgzh
+u"_ s lamuy + S (Wi dg + uiig))

Joh mk o ok =k Bk Bk
+ bl + W' Hg " U +uut,))

+ o?{af(u" s +u'sh)+ ut ,(uh, +u'tly)

+u" 1 (uiv 14t u’é,l,{ ))
+ (U yp +u )ag + alag

JA =h=k J .k
+ da lioig) + buu’,

+ (', L e + %a,-’,fk (w36 + ufag))

i JA, h JA (, h=k km=h hok
+u' sl (ayu; + %aﬂ_ﬂ;(ui U5 + uyilg + ujuy))

J (kg k h, ok h o=k
+%bhk(u—3u1+u1u#3+u—2uo

+ut L ag + U ut )}

+ o' {agiu_ (U, +u'il) +ut

+uh L)+ ut (g, + u' )

+ (u' 14+ 7'61,1 )(a.'gl + a}’:ﬁg + %aﬁk dglig) + b iuh_ 1

(U ,a +u_ L)ahih + %a;‘,}fk(u,il s + utag))

+ (u'_ 34t u'_ L) el + %a#l_((u’i' i§
+ uiTig + uiui))

+u' L a4+ Yalh (Wi ag

+ u3dg + uiuy + ujuf))

+ 4l " yus +usut y +uh

Bk hoo=k ko=
+uju o, +ul g U )}

+ o°faiu S uh, +u'il) + 2 (U5,
+u'il) +ut (uh, +u'sl)

i i’ A JAmk JA =R
+ (o + Wi h)aw + aiig + La;, Goig)

+ (W, + ZS L e ul + day (3G + ufag))

+ (', + U L) ey

+ i (uhul + B3¢ + uhub))

(U p + L e+ %affg(u's‘ﬁé‘
+ uslly + uiuf + ujuf))

+u'_sl, (a#“: + %a.’fg(uﬁ'ﬁé‘ + uﬁfﬁg
+ uius + uiuf + ujuf))

+ 30w suf +ubu* , +ut L uk

h,  k k h, k =y
+ubu® , +ut ut +utu |+ TRk

J J=h J ==k J  mhmke
+bo + byl + byl + b Bo G
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+ b j,m,,_, HATETTER 4 ..
Olw™?3=0. (14)
Here we cannot assume, as is done in Ref. 4, that 7

= 0; this would exclude important cases such as the electro-
magnetic tensor studied in Ref. 2. where

FaB = Gaﬂ(x) + Haﬂ(x’a)¢ )'

If one uses the norm || ||, defined in Ref. 1 the terms of
order n are the coefficients of @™ !, with the one exception
that when u}, is independent w¢ (i.e., &5 =0 for all /) the
expression

JA i J
agug, + by

in the coefficient of »° remains part of this coefficient. In that
case the full 0-order term is as follows:

aj(uh s + i)+ Ul 2 (U1
+usl) + (o, + Uil
+ Ui, + ' L)+ ulu s,
+u' L) +uiu 1)
+ag(u_a + Toa) + el Wlut s,
+ w4+ ut L (ui ey + utud)
+hiut | bW Uk uluk

+ut L uk +utut L)+ b

5. THE DISCONTINVUITIES AND THEIR
REGULARIZATION

The combination of (10), (13), and the use of differential
systems of the fourth order yield

W= 3 o-u. (15)

g= —3

From Ref. 1 we already know the form we have to give
to the regularizations of continuous functions having dis-
continuous first derivatives. We have

W=+ Ly, (16)
1)
where
Jim wile =[]
and
uy =0 if ¢<0.
(we use throughout the same notation as in Ref. 1).
One might think that this regularization could be gener-

alized in a direct fashion to higher discontinuities.
For instance, one might believe that putting

A 1 .

u'=uy, + —uj, (17)
o]

uy =0 if ¢<0, wieC*2),
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with

I "] 1l = [l = b,sl,
¢>lfr0]>u a*Btr [ O,aBr] ofp

(Hadamard's conditions) (18)
would be the right thing to do. The derivatives
U = Uoupr + uy'l gl + O™

would then be continuous for any @ only if (18) held true.
However this equation is equivalent to

éllm uy'lly = bz,

which would imply that the symmetric tensor b, ; defined on
2 and at first thought of as arbitrary should be a simple
tensor from the start, built with the vector /,. Hence, (17)
and (18) must be discarded and another more suitable kind of
regularization found for this type of discontinuity.

In order to achieve this, we will generalize the process
of substitution of the fundamental dependent variables by
nonfundamental ones that we did at the beginning of this
work to functions having only higher-order discontinuous
derivatives. Thus for a C *(2) function %}, which is only
C3(42,)and C 32 ), one will not have to construct directly
an expression of type (17); the regularizing term will be intro-
duced only in the new function representing the second deri-
vative.

Indeed, if %, is a fundamental dependent variable, we
will put

W =y =, {19)
U =aZ =, (20)
and
@an —ap 1 laﬂ l Aaﬁ
u? =gt + — -u05+—u (21)
w @

where the tilded indices are equivalent to J > M values for
which the ¥”s would be first and second derivatives of .
One gets from (21) by taking derivatives

1
u = glh 4y, ¢ — u“"”3

, 1
= Uy + U apy 4 —u’“ﬁ

Thus if we want to regularlze the third order derivatives
of u, appearing in the initial higher-order system, we can
postulate that we have for the variables in the corresponding
quasilinear system

iap — I
éhm u' @ L = [oup1 |

which is in fact equivalent to

lim "% = b.s. (22)
40"

We also have

lim w™

@ -~ o0

We shall repeat this procedure for the derivatives of other
orders, designating by the expression ‘‘discontinuous func-

_ Gia
= Uyg-
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tions of order n” those functions for which only the deriva-
tives of order no smaller than n can be discontinuous. This
implies that all the underscored terms appearing in {14) van-
ish. One should note that the coefficients of powers of &
larger than 2 remain unchanged.

6. FOURTH ORDER DISCONTINUITIES

The simplest case is certainly that in which only deriva-
tives of order 4 can be discontinuous. The required regular-
ization will take the form

u'=uj(x), i<M,

— ux,08)

1
- uO afid + — ulaﬁl!
(73]

where

lim u""‘“l
¢—0"

(Hadamard’s conditions).

[l_‘:),aﬁ,{u ] = baB/l l,;

Equation (14} is then reduced to

ayldo, +u L)+ b3+ 0w ") =0
Once the norm is taken, the orders 0 and 1 yield

aglio, +b5=0 (23)
and

au'il, =0.

The first equation just says that &, is the discontinuous solu-
tion we are 1ooking for. The second implies that

det(@tl,) = (24)
if we have nonvanlshing discontinuities; it is the well-known
characteristic hypersurface equation.

7. THIRD ORDER DISCONTINUITIES
In this case we use regularizations
u'=1ul (x), i<M,

u - uO( ) = a:).a(x)>

Px,wp)

u = 5Py + —
1 ((z/}
= Uy .plx) + — u(x,08),
w
laIJA _ —laB/l(x) + uzaB/l(x’w¢) + i u;lt'iB/_{
w

1 -
= uo(,ﬂ,{ + u”la314 + — uff,
W

where
4 =0 ifinf2_
. . . wiapi 1
aslm;‘ Wt =d.,, d)llrr(:‘u ot d "
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in which
d}']a,éla = [176,aﬁ/1 ]’ dzzaizl/l 1& = [ati),aﬁ,w ]

From these, (14) yields to first order after taking the norm
and averaging (cf. Ref. 2)

@yl ey + aitg) =0 (25)
U, a0 + b5 =0 (26)

(uo,z +u'il, )(axo + a:h ug)
+aluiutl, +b7uh + —bﬂkﬂ{;ﬁ{; +..=0. (27

Apart from (26) which is a repetition of {23), Eq. {25) yields
for effective discontinuities

1
det(a?s + alapad rapl My =0 (28)

which indicates that the form of the discontinuity hypersur-
face is linked to the values of the discontinuity it bears. Using
coordinates adapted to the hypersurface one gets (cf. Ref. 2)
lim det{ay? + a;,0ak) = 0. (29)
¢—0"
If the @’* are assumed independent of the third-order
derivatives of the u”s, i<M, Egs. (25) and (27) yield

aliil, =0 (30)
and
aﬁ(ﬁb,{ +u' )+ aM—” 11

+blat + —b’kﬁgu§+...=0, (31)

which give after the ¢ — 0™ limit

and
1 1
[ ¢liarré$a;’§,-,;0”(d wpli)a +d Iaﬁ%lzl]

1 1 . .
+ ¢1im [afdﬁ()b api + b laﬁ/l]yvyd J,wla }dia[;l/t +..=0,

which are propagation equations on 3 for the discontinuities
1

d;—&[g.

8. SECOND ORDER DISCONTINUITIES
We put
u'=1ujx) i<M,

E_ i 1 =

W* = agix) + — ullx,of)

@
= g (x) + —u rix.0f),

i = T + TP r0p) + L i 00)

=Ugop (x) + u'F{x,08 )i,
(32)
+ — ul ﬁ(x wd ),
w
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WP = U x,wd ) + E?ﬁ;’(x)

+ I w08 )+ — u"’ﬁ xwé)

= wu”’,"‘l L + 1§ 05, + (u"”‘

1

+u'Yly, + u”la.Bly) + . Uy pys

where 4@ = 0if ¢ <0, and
1

¢1m; u™® =d, with d,a y = [Hbay 1,

2

lim 4= L do with dulyl, = [@og ] (33)
¢ —0" @

3

3
011r2+u""“ = Fd;a with d iz lgl [y = [Ho.ap |-

3¢, JA,,h
w {alhu 14

WL} + ot {aju 1w+ uoly)
+u'_ Liag +aiag) + bt vt
+o'{aiu’ (o, +u L) + W, + uw'hl)ag
+apg) +u'_ Lagul +byu
+%bhk(u—1ﬁg +uk-:1=‘3)}

+ o®ayut i, + (o, + w1 ek + alii

+ .+ wolJapul + b3

+b3a5 + b ut + utut

+ UgHg) + 30 hun o B B + .-}
+0@™?)=0. (34)

Then, averaging and taking the norm and assuming the a;*
and b’ do not depend on derivatives of order 2 and 3 of the u’,
<M, all yield

agu't I, =0, (35)

(u1,1 + @Y +afutu’_ 1, =0, (36)
,uuo,{ +b3=0, (37)
agu'lly +afuiu_, +850)=0. (38)

Equation (37} is not new to us, and neitheris (35) [cf. (30)]. On
the other hand, both (36) and (38) can be simplified to

@', +@ol)=0 (37')
and

agu'il, =0. (38)
This last result is necessary since it could happen that the
third derivatives be definable as continuous across 2 even if
the second derivatives are not; since we are looking for con-

ditions on these, Eq. (37') alone would be insufficient to ob-
tain the characteristic equation when

lim w'’_
¢—0*

, =0.

9. AN EXAMPLE

The more arduous cases where discontinuous first and
zeroth order derivatives appear in an order-four system will
be left aside due to their complexity, which implies results
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the interpretation of which is not obvious unless ad Aoc as-
sumptions are made on the whole system. For example, in
the case of order-0 discontinuities, the complete equation is
{14) itself; obviously, without extra assumptions one cannot
hope to find more than the order-6 condition

det [alu" ,1,] =0

for nonvanishing lim #"_, discontinuities.
-0

We shall illu:trate in a later publication the procedure
developed here to the case of Yang’s third-order equations
for the gravitational potentials g5, which read

R.s, = R,,s + Bianchi’s identities.

(R,z is the contracted Riemann tensor). These equations are
an obvious generalization of Einstein’s empty space set,
which arise when one wants to interpret gravitation as due to
a parallel displacement gauge field (Ref. 5).

As asomewhat less involved example, let us have a look
at the general fourth-order equation in two variables x and y
for one unknown function u:

Fix, y; u; p,q; rs,t, a,b,cd; e, £,.g,h,i) =0, (39
where
P=Uy g=Uy;
r=1y, S=Uyy [=Ug;
a=1uyy, b=t €= d=1Uy
e=1uy, [=Uiney &= Ui
h =100 [=Unmnm.

(1 and 2 as suffixes to the right of a comma denote partial
derivatives with respect to x and y respectively). Following
Refs. 4 and 6 we can obtain a first-order canonical system
equivalent to the fourth-order equation if we make the iden-
tifications

Uy=x, U=y, Us=u; uUy=p, Us=4q
Ug=F, U; =S5, Ug=1,

Ug=a, u=>=b, u,=c, up=d;, us=e
Ua=f, us=8 ug=Hh uy=I

and then put, assuming (39) can be formally solved for e in
the form

e =G (x, y; u; p.g; 1s,t; a,b,e,d; £.g,h,0),

Uy = Uy, Uy = Ugly,,
uy,, =0, uz; =us,,
Uz =Ugllyp, Ug = Uqp,

Us) = Uy, Ugy = Upslp,,
Ug = Ugllyp, Upay = U3z,
Uygy =Ugyy Usy = U,

Uy =Upzs Hier = Uis2s

Uy =Uyg,,

Ui, =Gy + Giuy + Guug + Gauglu,, + Gsu,,
+ Gouey + Gatty; + Gz,
+ Gysthisp + Ghgtysy + Gty

Uy = Uy,
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It can be seen at once that this form of the equivalent
quasilinear system contains no 4’ term. The a/* terms are
more easily written as a list than in matrix form. We have

l=a'=a'=a}' =a¥' =4} =a5' =a}' =a¥
—af} = al = al —al =l
=a;5' =aiy' =a}’
—l=aP = aP=af = ol —a¥ = alg? = all?
=G} =gl =l = alp? = )]
@y’ = —u, ai'= —u, ay
= —uy, a7 = —u;
a3? =Gy a;;’ =G ay’
=G\ ‘112‘2 =Gy,

172 _ 17,2 ,

a,"=Gs, a*=G, a)’= Gy
172 _

a,"" =G, + Gsu, + Gaug + Geu,.

It is rather easy to obtain in this case the characteristic
determinant for fourth-order discontinuities. It is

I = G 15 — G, )5 — G5 1315

- G14Ul?l2} =0.
[The subscript 0 has the same meaning here on the G’s as it
had in (24}].

As noted before, this condition is independent of the
values the discontinuities may have along the characteristic
“hypersurface” (a curve here). On the other hand, referring
to (28) or (30), we know that the conditions for third order
discontinuities depend both on the specific form of Gand the
values of the discontinuities; the corresponding equation is

P = (G, + Gy, U, D3 — (G,

+ Glbmnw [1_43,,_‘,,“ ])lll; - (GISO + GIS [173‘,_(,,,,. ] )1 % 1%

— (G, + G, [, IHARS

where the sets (@fy) being summed refer, successively, to the
functions q, b, ¢, and d and the square brackets denote as

usual the discontinuities of the quantity they contain. These
can be interpreted as in Sec. 8.

10. CONCLUSION

Although it may seem that the conditions imposed in
Sec. 3 are somewhat restrictive, the example of Sec. 9 shows
that part of the problem may be avoided if equivalent sys-
tems of the form used in the example are used (i.e., systems
where the new variables nowhere appear in an nondifferen-
tiated form).
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Imitating Schilder’s results for Wiener integrals rigorous Laplace asymptotic expansions are
proven for conditional Wiener integrals. Applications are given for deriving generalized Mehler
kernel formulas, up to arbitrarily high orders in powers of #, for exp{ — TH (f)/#}(x, y), T>0
where H (fi) = [( — #/2)A, + V'], 4, being the one-dimensional Laplacian, V being a real-valued
potential VeC* (R), bounded below, together with its second derivative.

PACS numbers: 02.30.Mv

1. INTRODUCTION

For # > 0O, let H (#i) denote the quantum mechanical Ha-
miltonian
—#2d? Ax?
— +
2 dx? 2
The Mehler formula for the kernel exp{ — tH (f)/#}(x, y)
states that

exp{ — tH (fi)/fi}(x, y)
= (4 /2m#isinh At )!/?
X exp{( — A /2% sinh At )[(x* + y*) cosh At — 2xy]},

x, yeR. It is well known that the validity of the Mehler for-
mula is equivalent to the result that the WK B approximation
is exact for harmonic oscillator potentials.

This suggests that for more general potentials ¥, e.g.,
V(x) = 4°x*/2 + B *x*/4 (4,B€R) one should be able to use
quasiclassical expansions to determine the kernel
exp{ — tH (%)/#}(x, ), x, yeR, for H (#)
= {(— #2/2)(d?/dx*) + V(x)},uptoarbitrarily highorders
in #i, in terms of the corresponding classical mechanical solu-
tions. Formal results of this kind have been given by Miz-
rahi,! De-Witt,2 and Truman,’ but, to date, there does not
seem to be any rigorous proof of the validity of these expan-
sions.

For a rigorous proof we require a generalization of the
Laplace asymptotic expansions for Lebesgue integrals to in-
tegrals over function space. The functional integral required
in this context is the conditional Wiener integral. Here we
base our main technical result Theorem 1 on a number of
new estimates—Lemmas 5, 7, and 14 and the seminal work
of Schilder,* who considered Laplace asymptotic expansions
for the Wiener integral. We learned the method of proof of
Lemma 5 of this paper from Simon’s’ excellent book on
functional integration in quantum physics. (The underlying
idea is the beautiful proof of Kolmogorov’s lemma.) There
are, however, several alternative ways of obtaining this esti-
mate. Our results do not use the extensive work of Donsker
and Varadhan in this area, because, for the conditional Wie-
ner integral, Schilder’s methods seem more obvious.

In Theorem 1, using Donsker’s “flat” integral,® the
functional integrand is assumed to have a unique global
maximum, but we can allow there to be any finite number of

H(#A) = [ ] (4€R).
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global maxima. In this case Theorem 1 can be used to obtain
Bender-Wu type formulae for the x*¥ -anharmonic oscilla-
tor (see Ref. 7). By combining some of the ideas of Schilder
with those of Pincus,® Theorem 1, with more restrictive as-
sumptions, can be extended to a general Gaussian process,
but more general results of this kind are now available in the
work of Ellis and Rosen.®

The applications of our theorem to establishing a gener-
alized Mehler kernel formula are given in Theorems 2 and 3
in Sec. 2 of this paper. In Theorem 2 general anharmonic
oscillator potentials V (x)eC> (R), which are bounded below
and convex [V "(x) > 0], e.g., ¥V (x) = (4 °x*/2 + B*x*/4) are
considered and a generalized Mehler kernel formula is given,
up to arbitrarily high orders in 4, for arbitrary finite times. In
Theorem 3 nonconvex potentials are studied and a general-
ized Mehler kernel formula is given but only for sufficiently
small times. As will be seen these results and the Bender-Wu
type results are quite easy to prove. The main reason for this
is that the requisite conditions for Theorem 1 are expressed
in terms of a supnorm and not the more restrictive L? norms
used in some treatments.

We state Theorem 1 and the attendant conditions be-
low. The proof is deferred until Sec. 3. In what follows
C,[0,T7] is the Banach space of continuous functions
2:{0,T]—R with z(0) = z(T') = 0 equipped with supnorm

llzll = sup |z(7}].
[0,T]

C,[0,T'] supports the conditional Wiener measure dig 0.1
with covariance

[ atokttldsonrle) = @) =501 — /7,
C,[0,T)

0<s <1<,
with mean zero

J- 2(s)dpoo0,r(2) =0, O<s<T.
C,I0,T}

For the associated probability measure

#OTO!O,T{CO[O)T ] }dﬂo,o;o,r(z) = (2T )l/zdﬂo,o;o,r(z)’
we use the notation

(277'T)”2J-

Gl0,T

] Flz)duopo,r(z) = Ef[F(z)},
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for suitable functionals F. Slightly abusing notation, for mea-
surable sets 4, we shall sometimes write

E {x.)} =E{4},

where y , is the characteristic function of the set 4.

C ¥[0,T ] is the reproducing kernel Sobolev space associated
with C,[0,T']; zeC ¥[0,T ] if z is absolutely continuous with
derivative z'(7) in L2[0,T], 3 [2'(1)]* d7 < .

Theorem 1: Let F(z) be a real-valued continuous func-
tional defined on C,[0,7] and suppose that the functional
{F(z) — 27 '§{[2'(r)]* d=} has a unique maximum at
x,€C3[0,T Jwith { F(xo) — 27 '§§ [x4(7)] > dr} = b.If Fsat-
isfies the conditions 1-6 below, then

exp{ — b4 “?}El{exp{4 "*F(12)}}
=T+ AL+ A+ 4+ A0, +0A"73),

as A—0, where the I'; are integrals dependent only on the
functional F and its Frechet derivatives at x,

(1) F (z) is measurable.

(2)F(z)<(b + L,) + L,||z||*, o007 almost everywhere.
L,,L, are positive real numbers with L, < min{y/27, 1/4T },
¥ being the constant in Lemma 5. (See also remark at the end
of Theorem 3.)

(3} F (2} is continuous for

llzlf <maxf(L, + 1)*/?/|L, — 172T |'2,2T (L, + 1)/7]'"%}

and upper semicontinuous on C,[0,T’].

(4) F (z) has n>3 continuous Frechet derivatives in a ball
of radius & centered at x, in Cy[0,7°], § > 0. We further as-
sume that the Frechet derivatives D/ F satisfy
D/F(x, +mlz/ =0 (|z|V), if ||n]| <&.

(5) For some € > 0, for ||| <4,

El{exp{(1 + €)D2F (x, + 1)z*/2}} is uniformly bounded.

{6) x4 (-} is of bounded variation on [0,7°].

Since we can deduce the above result with & #0 from
the corresponding theorem with b = 0 by making the re-
placement F (z}—[F (z) — b ], we only prove Theorem 1 for
b = 0. (This incidentally enables us to avoid a non sequitur in
Schilder’s original paper.'®) The proof of this version of the
theorem is given in Sec. 3. As we have already remarked the
seminal idea for this proof is Schilder’s. Theorems 2 and 3
together with their proofs are given in Sec. 2 of this paper.

For convenience we shall use a notation consistent with
that of Schilder’s original paper. For instance, if zeCy[0,T],
z"(-}eC *[0,T ] denotes its polygonalization defined by

=)+ (- D)D)
JT/n<r<{j+ )T /n,

forj = 0,1,2,...,(n — 1). The corresponding n-vector is denot-
ed z", where 2" = (z(T /n),z(2T /n),....2(T')). As we have al-
ready stated || || denotes the supnorm throughout so that

D)) = k.

2. SOME APPLICATIONS OF THEOREM 1

We now discuss the kernel exp§ — TH (#)/#}(x, y), for
the quantum mechanical Hamiltonian

lz"()ll = sup [z"(r)] =  sup
7€(0,T'] Jj= L2, n—1)
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H(#) =[(—#%/2)A, + V], where the real-valued potential
VeC= (R) and is bounded below. We are aiming for a gener-
alized Mehler formula for the kernel expressing it in terms of
classical mechanical solutions up to arbitrarily high orders
in #i. We begin with a standard result from the direct meth-
ods of the calculus of variations.

Lemma I: Fix x, yeR and T'> 0. Let the real-valued
potential VeC~ (R) be bounded below. Let the functional

T

Alzy=2" ’f [Z(r)1 dr +f Vizl7)) dr

(note sign of V') be defined for ze«, the space of absolutely
continuous functions z(r) defined on the interval [0,T] with
z(0}) = x and z(T') = y. Then 4 attains its global minimum at
at least one path X, €&/, X, is smooth and satisfies the
Euler-Lagrange equation X 7, (1) = V'[X_..(7)], [0, T],
with X, (0) = x and X, (T') = y.

Proof: See for instance Chap. 4 of Ref. 11. ]

The next lemma is basic to our resuits.

Lemma 2: Let the self-adjoint quantum mechanical Ha-
miltonian H () = [{ — % %/2)4, + V'], where the real-valued
potential ¥eC= (R) is bounded below. Let the wavefunction

y¥e.#(R). Then, for each fixed T"> 0,
exp{ — TH (/%) ¥ix)

- f exp{ — TH (B)/H)(x, i y) dy,

where the kernel is given by
exp{ — TH (#)/#}(x, y)

— gz exp{ 4 (Xmin)/ﬁ}_f dyo,o;o,r(Z)

GCol0,T]

Xexp[ — ﬁ“f [V [ Xomin (7) + #'%2(7)]

=V [Xnin(7)] —ﬁ”ZZ(T)V'[Xmm(T)]]] dr

and X, is the global minimum of 4 above, o, 1 being the
conditional Wiener measure on C,[0, T'], the space of contin-
uous functions z:[0,T ] >R with z(0) = z(T") = 0.

Proof: The Feynman-Kac formula'? gives with
A = #'2, for real ¥eC> (R) bounded below, ¥€.7(R),

exp| — TH (#)/#}¢(x)
—E, {exp{ A f Vix+ iz(rndr]://(x +Az(T»},

E, denoting Wiener integral. We simply translate z—(z + a)
witha(-) = A4 ~1{X_, () — x), X, {-) being a smooth solution of
X5(n)=V'[X,(7)], 7€[0,T], with X, (0) = x.X, (T ) as yet
unspecified. Using the translation formula,'? which is valid
since the functional integrand is bounded and continuous,
we obtain

exp{ — TH (#)/#}ix)

= exp{ — 2; > J;T [X2 (r)]za’r}

XE, [exp{ — A2 LT V[Xa(r) + Az(r)]dT

—A! JOTXC’l (7) dz(v')];b()(c1 (T)+ /lz(T))].
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Setting
T T
A(Xcl)=2_lf [X;l(f)]2d7'+f V[X.(7)] dr
0 (1]
gives after integrating by parts'® in the exponential,

exp{ — TH (%i)/%}(x)

=exp|{ — A4 (X, )/R]E, [exp[ —A —ZJT [V [X(7) + Az(7)]
—V[X.(n)] —Adn)V'[ X, (7)] ]dT]

Xexp{ —4 _'Xé.(T)Z(T)W(Xcl(T)+/12(T))}-

But, using what we hope is an obvious notation,

E.{F@) = [doour,r) doTIF (),
giving fory = Az(T') + X, (T),
AW =V [X,(r) +Az7)] — V [Xa(r)] — Azln)V' [ Xt (7)],
exp{ — TH (#)/#} Y(x)

=#""exp{ — 4 (X, )/#)

X [dtons v xrarle)dy 1)
T

Xexp[ —A _2J A?Vdr
(4]

AL Ty~ Xa (D)

Hence we have shown that
exp{ — TH (#)/#}(x, y)

=2 CXP{ —AX, )/ﬁ}J‘d/uo,o;r‘(y— XC|1Tn,T(Z)
T
Xexp[ —A ‘ZJ A*Vdr
o

—A 72X L(T)y _Xcl(T))}‘

We choose X, (-) = X, () so that X (T') = y and the de-
sired result follows. a
Lemma 2 has the following corollary.
Corollary 1. For real VeC~ (R) bounded below, for the
self-adjoint quantum mechanical Hamiltonian
H# =[(—#/2)4, + V], and for #'/2 = 4,

exp{ — TH (fi)/#}(x, y)

= (27TH~""? exp{ — A (Xmin)/A}E{exp{A ~2F(A2)}}
where the functional
Fl)= = [V [Xualr) + t7)

— V[ Xin(7)] — 21V [Xin(7)]} A7

and
Fiz)—2~ ’fr [Z'(n)]* dr

= _A(Xmin +z)+A(Xmin)’ ZEC:[O,T].

Proof: The first part of the corollary is obvious. From
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the hypothesis of Lemma 1
T T
aw=27"( el dr+ [ Vi) dr, zea.
(V] (1]

Thus
—4 (Xmin + Z) +A (Xmin)

= —J; [V [Xmin (T) +Z(T)] - V[Xmin(T)]

+ X i (7)2'(7) + 27 [2(7)]?] d7,
€ by definition and X, + ze/, 2eC¥[0,T ].
But X, satisfies the Euler—Lagrange equation

X min = V' [Xmia ] and so
JJX min (T2'(7) dT = — J TZ(T)V'[Xmin(T)] dr,
(¢] 0

giving the required result. a

Evidently for us to be able to apply Theorem 1 we re-
quire the maximum of [ — 4 (X, +2) + 4 (X,)] tobe
unique in C ¥{0,7" ]. By definition of X, this maximum is
zero and it is uniquely attained at z=0 iff X, the global
minimum of 4 over & is unique. When ¥V is convex the next
lemma assures us that this uniqueness holds.

Lemma 3: When VeC= (R) is real-valued, bounded be-
low and strictly convex X, the global minimum of

AX)= 2—‘f [X ()] dr +f
0 0

over 7, the absolutely continuous paths on [0,T] with
X(0)=x, X(T) =y, is unique.

Proof: Assume there are two global minima X, and X,.
Then, since X, and X, are smooth and each satisfy the Euler—
Lagrangeequation, if4 (7) = X (1) — X,(7),A (0) = A (T) =0,
and from Taylor’s theorem, for some 7-dependent 8, 0<6<1,

since X,

T

VIiX(r)] dr

h"(r)=h(nV"[X,(7)—6h(r)], €[0,T].

When 4 ’(0) = 0, X {(0) = X ;(0), and the usual theory of ordi-
nary differential equations assures us that X,(7) = X,(7),
7€[0,T]. Thus, there are only two cases to consider 4 '(0) > 0
and 4 ‘(0) < 0. In the first case 4 (0) = A (T') = 0, £ '(0) > 0, as-
sures us that 4 (-) must have a first local maximum &, say, with
h(&)>0, £'(£) = 0. But from the above equation 4 "(£)>0
and we have a contradiction. The second case is dealt with
similarly by looking for a first local minimum. (]

We now come to our first application.

Theorem 2: Let H (#)) be the self-adjoint quantum me-
chanical Hamiltonian H (#) = [( — #°/2)4, + V'], where
VeC= (R) is strictly convex and bounded below. Let X,
denote the unique minimum of

T
Az)= 2“1; [Z'(")? dr + fr V[z(r)] dr
0

over the absolutely continuous paths z:[0,7]—R with
z(0) = x, z(T') = y. Then, for each finite time 7> 0,
exp{ — TH (A)/#}(x, y)

= exp{ — A (Xpn )/ A} (27 TH)~ /2

XEl{exp{#~'F(#'/%2)}},

where
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T
Fit) = = [ 1V Xl +200)] = ¥ [Xonlr)]
— 2V [Xin(7)] ] d,
satisfies the conditions (1}-(6) of Theorem 1.
Hence, for each finite integer n>3,
exp{ — TH (fi)/#i}(x, y) exp{A (X, )/ 7}
n—23

=QaTH~V S (@)

i=0
1 T
xET {exp[ - — f V"X i )2 dr}
2 Jo
-
X (h‘/2(3!)— 'J V"X i )2 dT + -
0

+ ATV (n 1)) —'LT AT AL df)i]

+O(H" =), *)
SV "(X min )2* d7 being a shorthand for
oV "X in (T)22(7) d7, etc.
Proof: We need only show that conditions (1}-(6) of
Theorem 1 are satisfied for

Flg)= — f (V Ko (1) + 27)] = V [Xo(7)]

— )V [Xialr)]} dr.

Conditions (1), (3), (4), and (6) are easy to check. Condition (2)
is satisfied because, for some 7, with ||7]|<||Z|,

T
Fi)= —2—‘f V[ Xy 1) + 7(r) 247 dr<0.

Condition (5) is valid because a simple calculation gives
D?F(xy + )2* = D*F(n)2*

r
= _J V" [ Xin(7) + 1(7)]2%(7) d7 <0

and ET{exp{(l + €)D?F (x, + 7)z°/2} }<El{1} = 1.
The final identity of Theorem 2 follows from the proof of
Theorem 1. O
Remark: The asymptotic series resulting from equation
(*) does not contain any odd powers of #'/2, because of the
symmetry of the Gaussian measure. We now extend our re-
sults to a wider class of potentials.
Lemma 4: When VeC= (R) is real-valued bounded be-
low and V"> — |8, for some constant 3, the global mini-
mum of

T T
A(X)=2"£ [X'(T)]Zd'r-i—Jo ViX(r)]dr,

over .7, the space of absolutely continuous paths on [0,T']
with X (0) = x, X (T') = y is unique if T < #/|B |'/2.

Proof: Assume there are two global minima X, and X,.
Since X, and X, are smooth and each satisfy the Euler-La-
grange equation, if & (1) = X (7) — X,(7), A (0)= A (T) =0,
and, for some point £ (7) intermediate to X,(7) and X,(7),

h'(A=h(n)V"(&(7), 7€[0,T].

Multiplying both sides of this equation by 4 (7} and integrat-
ing by parts gives
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J(; [h'(r)]*dr = *fo RV (£ (7)) dr.

However,
T T
, T
L [A (T)]sz>~T—2J; h*7)dr,

7°/T? being the least eigenvalue A of the equation
— h "(r} = Ah (1), with k (0) = h (T'} = 0. By hypothesis
— V7§ (7))<]B | and so from above

77_2 T T

st J k() dr<|B| f h(r) dr.

T J 0
Hence, for T < w/|B |2, we must have §I h %(r)dr =0, so
that X () = X,(7), 7¢[0,T’]. O

Our second application is contained in Theorem 3.

Theorem 3: Let H () be the self-adjoint quantum me-
chanical Hamiltonian H (#) = [( — #%/2)4, + V], where
VeC= (R)isbounded belowand V' ”» — |8 |. Let 4 (X )as de-
fined above attain its global minimum at the unique point
Xmin €27, the space of absolutely continuous functions
z:[0,T]—R with z(0) = x, z(T') = y. Then, for sufficiently
small time 7,
exp{ — TH (fi)/#}(x, y)

= exp{ — 4 (X /A 27 TH) =12

X ET{exp{#~'F (' 2)}},

where

Flg = —fo (V [Xoinlr) + 2] = ¥ [Xoun ()]
AW [Xn()]) s

satisfies the conditions (1)—(6) of Theorem 1.

Hence equation (*) is valid for each finite integer n>3,
for sufficiently small time 7.

Proof: Lemma 2 establishes the desired identity given in
the equation above.

Conditions (1), (3), (4), and (6) are easy to check. Since,
for some % with ||7||<||z|l,

Flg= — 2“‘[0 V7 [ X () + ir)]2%47) dr
<L e = Ly,

for L, = |8 |T /2, condition (2)is valid if T < min{{y/|8|)'/%,
(172181)'"%.

Condition (5) is valid because
D?F(x, + 1)2*
= D’F(y)z*

- L V" [Xuia(7) + 1(r) ] 22(7) dr< B T |J2]|?

and
E7{exp{(1 + €D *F (x, + n)2*/2}}
<ET{exp{(1 + €)(18T ||zII*/2)}}

for(1 + €)|B |T /2 < y/T fromLemma 8. Thelastconditionis
valid, for some € > 0, if T'< (2y/|8 |)}/?, which is valid by hy-
pothesis since T < (y/|8 |)"/*.
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Remark: In the last theorem it is important to have the

best possible value for . Lemma 5 gives the value of 7,
= (1 — 2~ Y4?/4, an inequality of Doob'* gives the im-

proved value ¥ = 2. Doob’s inequality is, however, much
more difficult to prove than the simple estimate of Lemma 5.

The justification for calling Theorem 2 and 3 general-
ized Mehler kernel formulas is given in the final corollary.

Corollary 2: Let the self-adjoint quantum mechanical
Hamiltonian H (#) = [( — #/2)4, + V'], where VeC* (R)
satisfies the conditions in Theorem 2 (Theorem 3). Then,
setting 4 (X i) = 4 (x, »,T), for each finite time 7> 0 (for
each sufficiently small finite time 77> 0),

exp{ — TH (#)/#}(x, y)
= (27A) /% exp|

(;a x, y,T)) (1+ %K, + O (%)},

— A (x, y,T)/#}

where

Ki=- f VO (7)G rir) dr

f f dr 0 V(X g (N "X (0)

X [3G (r,7)G (1,0)G (0,0) + 2G *(1,0)] d7 do,

G (7,0) (the Feynman-Green’s function) being the Green’s
function of the Sturm-Liouville differential operator
[d?/do” — V" (X,

min (0)) ] With zero boundary conditions
GO0, =G(T,7)=

Proof: The proof of this result (and corresponding re-
sults for higher order terms) follows from the identity:

(21rT)”21ET{exp{ Y azt, )}
i=1
X exp[ — —J. V" [ Xia (7)]2%(7) dr”
af P4
= (27)~ (—x, ,t) exl a;a Gt,,t]

(27) x dy (x, yt) P ) ,é . (
To prove this denote f3z'(r)w'(r) d7 by (z,w), for
z,weC ¥[0,T ]. Equipped with this inner product C ¥[0,T ]
is a reproducing kernel Hilbert space with kernel
pls,t)=s(1 —1/T), s <t. Now defining L:C ¥[0,T ]
—C¥*[0,T]by(Lz)" (1) = — V" (X {7))2(r) and integrating
by parts we see that

T

@Le)= [ V" Kl

4]

Integrating we can find (Lz) explicitly. We obtain
(La)e) = — f dr’ f V"X it ")ele ") dt”
+ L f dt'f V" Kottt ") dt*
T J 0

Hence, for # the Heaviside function,
TIe
Lz)(t) = — — B —¢t")|dt'
wae) = [ [£ — ot -1
f V2 Xt "Nele ") it ”.
Define L,:C¥[0,T 1->C¥[0,T ] by
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(Lol = [ (%

and define

(Lo2)(t") = f VKo "t ") it ”,
LZ:C'O[O!T]—)CO[O’T]:

where C,[0,T ] is the Hilbert space of absolutely continuous
z:[0,T]—R with2z(0) =0. Then L = L,L,.

—H(z—z’))w{t’)dt’

Let {6,,....0, }, {#1,....¢, } be orthonormal systems in
C2[0,T ]. Then from the Cauchy-Schwarz inequalities
3 liBoLLa0]

Z 1L ¥e:11[L26:

i=1

[ Y (8:,L\LTé )} 2{ > (6;,L ¥L,0; )}1/2

i=1 =1

<”L ﬂ'2||L2“2 = ||L1“2||L2”2 < ®,

|| |, being the Hilbert-Schmidt norms on C$(0,7'] and
C,[0,T’]. Here the last step is valid because

(Llw)(t)=f:[iT —H(t—-t’)] ;%( t")dr”
= 5 :;tui (t”)dt”f’ dar’ [7 —G(t—t )]

T

= [ B L ey - 6te— o)

o]

show that L, has an L ? kernel and ||L,||, < « and similarly
for L,. It follows from the above inequality that L = L L, is
trace-class.

Setting

n

zt)= Y a;plt;t)
i=1
and using a standard result for Gaussian processes,'®!” we

now obtain
= (27T)""*EX{exp{(z0,2)} exp| — }iz.L2)} )
= (277) ™" exp{ifzo,(l + L) 'z0)} [det(1 + L)1 7",

det{l + L)and (1 + L)™' can now be calculated as in Ref. 1.
The results of the calculation are detailed above. a
Essentially the above result was derived formally by

Mizrahi.! Equivalent results were obtained by DeWitt* and
independently and almost simultaneously by Truman.* We
believe the above to be the first rigorous proof of this result.
Results for the behavior for large arguments of eigenfunc-
tions of quantum mechanical Hamiltonians reminiscent of
those above have been published by Carmona and Simon. '*
The calculation of higher order terms, using the Feynman—
Green’s function, is extremely difficult and the results stated
in Theorems 2 and 3 seem more useful.

3.PRELIMINARY LEMMAS AND PROOF OF THEOREM 1
A. Preliminary lemmas

We begin with a crucial estimate which is based on a
beautiful argument of Kolmogorov. We learned this method
of proof in Simon’s excellent book. (See Lemma 18.7 in Ref.
S).
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Lemma 5: For some fixed constants C,y > 0 and for suf-
ficiently large o’
El{)z]|>a’} < Cexp{ — ya’*/T}.

Proof: Denote the covariance E]{z(s)z(¢ )} by p(s,)
where p(s,t) = s(1 — ¢t /T), 0<s <t<T. Setting

(bu bIZ) _ (g(sys) P(S,t)) - <a“ 012)‘ !
by by (ts)  plot) ay  ay)
the joint probability distribution of x; = z(s), x, = z(¢ ) is pro-
portional to exp{ — (b, x> + byx,* + 2b,,%,x,}. Defin-

ing y = (x, — x,), we see that the joint probability distribu-
tion is proportional to

expl — il(by) + byy + 2b,)(x) — (bay + b/
(by1 + b2 + 2b,)) + (bpby — b L/
(b1 + by + 205015

Integrating with respect to x,, gives
2

EZTUZ(S)—Z(t)[>a'} =1\7J‘00 exp{ -y dy,
a 2a,; + ay, —2ay,)

for some normalization constant N. However, from the
above explicit form of p,

ay + 8y —2a,, = E]{|2(t) — 2(5)|*} <2|s — 1 |, 5,2€[0,T'}.
And so, substituting for N, we deduce that, for g > 0,

EJ{|z(s) — z(t)|>a]

o 2
<Nf exp[ 24 }dy

4|5 — 1]
S _ xz
=202m) V2 f exp( ) dx.

a/i2)s ~ 1 |)M? 2
Since §* exp{ — x*/2)dx<a"" exp( — a*/2), we arrive at
{5

2" 2"
—c2pm
QRmTVAC T2 exp{-—-—————4; ]

It follows that

(55

>C,2 "% some 0<k<2", some n}

_ C%zn/z
[ 4T ]

Denoting the nth term in the above infinite series by «,,, for
n>l,ifC2/4T>2,

u,/u,_, =exp{3ln2 -2~ 122V2 _1\C3/4T }<e 7,

where @ = 2{2'/2 — 1) — (3/4) In 2 > 0. Hence, for C3 > 87,
we obtain the estimate

e |(5) - 5),
2" 2"
>Co2~™*, some 0<k<2", some n}

_Coz}
AT |

<21T~IIZCD—IT1/2 z 23n/4 eXp

n=20

27~ 12C 5T
(1—e"7)

oo
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Now, if

{5)-55)

for 0<k<2", for each n, then, writingt = T2 ,

each a; being O or 1, 1[0, T}, and observing

ee) =20 < 3 ety 1) — s,

=

< C02 - n/4’

a2,

s; being the jth partial sum of 727 | a,2 ~/, we deduce

l2(t) — 2(0)|< ¥ 4,Co2 < Co/(1 =27V =a.
ji=0
Hence, if |2{t ) — z(0)| > &', for some 2€[0, T}, we know that for
some 0Kk <2", some n,

(kT) ( k—1 T)
Z —Z

2" 2"

and it follows from the above that, since z(0) = 0,

El{|z(¢)| > @', for some 1€[0,T]}
277.'— UZT 1/2
< == -

—

> COZ — n/A’

< exp| —a'}(1 —27V42/4T},
a'(ll—e

fora’>(8T)"}1 =279, a=2(2"~1)—3In2>0.

Lemma 6 (Schilder): If

max [ sup z(r) — z(fj—-) ] < S ,
ogj<n—~1 | jT/n<r<(j+ )T /n n 2

then ||z — z" ()| < 8,2" (-) being the polygonalization of z.
Proof: Let 7, be a point where |z(7) — 2" (r}| attains its

maximum. Let j be such that j7 /n < 7,<{j + 1)T /n. Now
|z(7o) — 2" (7o) |<|2(7o) — 2UJT /n)| + |2(jT /n) — 2" {7)|.

By hypothesis

|2(7o) — 2(jT /n)| <8/2 and |z( j+ 1T /n) —z(jT /n)| <8/2.
From the last inequality every point on the straight line z”
joining (T /n,2(jT /n))and( j+ 1T /n, 2( j+ 1T /n))sat-
isfies |z(jT /n) — 2" (v)| <& /2,7€[jT /n,(j + 1)T /n].Inpar-
ticular this is valid for 7 = 7. This proves the lemma. O

We also require a more refined estimate than that of
lemma 5.

Lemma 7: For each sufficiently large integer m, for any
6'>0,

Ef{|lz — 27()]|>6') <C8'~(mT)'"* exp{ — Dm&"/T },

for constants C,.D > 0.
Proof: Repeating the argument of Lemma 5, we obtain,
for Cim/4T> 2,

[+ 22) 42+ 1)
m m2”" m m2"

>Co2 ~"*, some 0<k<2", some rz}

. 212 C“‘(—T—)]/zex [__ mCé}
S——— Lo P >
(1—e 9 m AT

where @ = 22" —1)—3In2>0.
We now observe that, if
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Z(J_]: + __kT)—z(E 4+ k_lT)‘<C02*"/4,
m m2” m m2"
for 0<k<2", for each n, then writing

(t——:——Zak -k

m k=1

where a, =0 or 1, as in Lemma 5, we deduce

z(t) —2(%_)‘<Co/(1 _2-y =y,

for te[jT /m, (j + 1)T /m]. Hence, if |2(t ) — z(jT /m)| >C ¢,
for some t€[ jT /m, (j + 1)T /m], we know that, for some n
and some 0<k<2",

o
m m2" m m2"

From the above inequality then, for C, = C (1 —
Cim/AT>2,

[ (T)‘>Co, some te JT (J+ l)T“

m

—1/2 172 mC?2
<-—21T——_—C0_ ‘(—7:—) exp[ 0] .
(1—e—*) m 4T

We now let
n-A)2).

forj=0,1,2,...,(m — 1), integer m. Using the above inequa-
lity, we see that

. m—1 . 277.—]/2 . 2
E; jgo Q; <—(-1'—_'e—co {mT)'“expy —

where C, = §'(1 — 27'%)/2. Now, if

m—1

>C02 — n/4‘

2—1/4),

T/ m<r<{j+ )T /m

or= {zeco[o,rn sup

me,}
4T

—

# U Q7
j=0
then
sup z(r)—z(‘lz) < -6—,
JT/m<r<ij+ YT /m m 2

forj=0,1,2,...,(m — 1)and so by Lemma 6 |z — z™ (-}|| < &§".
It follows that, for 6 ?m(1 — 2~ V42/16T> 2,

E7{llz — z"()[>6}

—1/2
<2 CsimTy
(1—e™9
X exp{ —m&}1 —2~"42/16T },
|
[ 2 -1 0
—1 2 -1
(n/T) 0 —1 2 -1
0 -1 2
0 -1
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where C, = &'(1 — 27 '4)/2. O

The functionals on C,[0,7"] which we encounter will be
bounded by exp{k ||z{|* + ! ||z]|}, 2eC,[0, T ]. The next esti-
mate is basic in our theorem.

Lemma 8: for k,JeR, ET{exp{k ||z||* + ! ||z||} } < oo, for
k <y/T, y being as given in Lemma 5.

Proof: Let y (n) be the characteristic function of
{zeC,[0, T'1i{|z]|e(n,n + 1]}. Then

EZ{exp(k 2| + 1 z1})
= 3 EXexplk [l + el i)}

- Ef{exp{k |izlf* + 7 ]lz]|}}

< Y explk(n+ 17+ 1(n+ 1)JE {y(n)}
S El{exp{k||z[12 + 21|zl }}

< 3 explk(n+ 17 +1{n+ VET [z > n}.

n=0
Hence, we deduce from Lemma 5

E](exp{k 2| + |z]l}}
< i Cexplk(n+ 1 +In+ 1) —yn*/T} < o,

n=0

for k <y/T. O
As has been seen previously, for each zeC[0,T ], we can
define its polygonalization z” {-) by

=)+ (- D) )5

T :
T UV ot =),
n n

We denote the associated vector by z*, where
= (T /n), 22T /n),....z2( n — 1T /n), 2(T)),

and in what follows, for vectors z”,
2"l = sup |z},
Jj=12,...n

z; being the components of z*, denotes the supnorm of z* .
The next four lemmas are due to Schilder.

Lemma 9 (Schilder): Let A, be the following (n X n) tri-
diagonal matrix

I. Davies and A. Truman 2065



then for s”, an n-dimensional vector

A=Y (/TS —s;_ ) s5=0.
Jj=1

We postulate that
T
f [ds*(r)/dT]* dr = 5"4,5"
(0]
and
T
z”A,,z”<J- [z(7)]*dr,
0

where 5" (7) is that polygonal function belonging to C,[0,7]
having s” as its associated vector.
Proof: See Lemma 4 of Ref. 4. O
Lemma 10 (Schilder): If zeC ¥[0,T ], then, for 7, > 7,

sup [2lr) — 2lr)P<(rs — ) J (7)) dr.

TISTK T,

Proof: See Lemma 5 of Ref. 4. ]
Let us define the function 4 (§) by

a61=swp [Fer— 1 [ 121 o],

where A is the set
{zeC*[0,T 1|||z — x,||>6}, foré>0.
Lemma 11 (Schilder): Suppose F (z) satisfies the condi-
tions given in the theorem then 4 () <0 for § > 0.
Proof: See Lemma 6 of Ref. 4. O
Lemma 12 (Schilder): If ||s" (-} — x5(-)|| > and
w — p, >0then Fis"(:)) — 1s"4,5"<4 (@ — p, ), where
Pn = ||xo — x5(-)||. x5 () being the n-polygonalization of the
unique maximizing path x, of

F(z) — %J; [z(r)])* dr.

Proof: See Lemma 7 of Ref. 4. d

The following lemma is merely an evaluation of one of
the constants that would appear in a statement of equiv-
alence of norms. The interesting thing is that the proof does
not seem to come from any eigenvalue result.

Lemma 13: Let A, be the matrix defined in Lemma 9.
Then, if w” is any vector in R”,

w"A,,w"}T —lllwn”2’
|| || being supnorm.

Proof: From Lemma 9 we are required to prove that

no> wf —wi P llw|f
i=a
w" = (w,wi,...,w"), wy = 0. Let P (k) be the proposition:
k [} 4wy — wi) + -+ (wf —wi )]
> Wl w)eeaw] ,0,0,...,0)]]%.

Assume that P (k) is true for some k < n. Then, trivially, by
inductive hypothesis,

(k+ D[} + (w5 — wi)? + -+ (Wi —wy )]
>k + 1[5 + @5 — wif + -+ (wi —wi )]
>k [(Wi + W5 — wiP + - + (wi —wi )]

> |[(w} w},....w;,0,0,...,0)]|%
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Thus, we need only prove that
(k+ D[ + (w5 —wi)® + - + (wi
- wZ)Z] >(w2+ 1 )2'
However,
(k+ D) + W5 —wi) + - + Wi, — wif]
= (k + D[P + w5 —wiP + - + (wi —wi_,)*]
+ (k + Dwg ,  — wi)?
and by inductive hypothesis
Kk + D[P + =+ Wiy — wi)’]
>(k + we)*/k + (k 4+ Ywp , , — wi)
=f(wZ/wZ +1 )(w;(1+ 1 )2:
where f(x) = (k + 1)x*/k + (k + 1)(x — 1)>. Trivially
flwi/wy , )>1andso P(k)=>P(k + 1). Since P(1)is true by
inspection, P (n) is true proving the lemma. g
If 8 > O we define the function y ( 8, y,z) to be the charac-
teristic function of the set {zeCy[0,T]|||y — z||<B }. The fol-
lowing lemma is crucial in the proof of Theorem 1.
Lemma 14: Let F (z) be as given in Theorem 1 and let
6 > 0. then, for sufficiently small 4,
IA)=EI{(1 — y(6/4,x,/A,2)) exp{d ~*F (Az2))}
= O (explad 7?)),
for some a < 0.
Proof: Although we will proceed to prove this lemma in
a manner similar to Schilder’s, it can be obtained as a special

case of an abstract theorem of Varadhan.'®
Since x,(7) is continuous on [0,7'] we have

lim |}, — x3()]| =0
and, from Lemma 9, we have

4 2
limx3A4,x; <J dr.
0

[L .

dx,
dr 7)

Therefore both sequence {||x3(-)||} and {x54,x3} are
bounded. Hence there exists a positive constant c sufficiently
large so that, for all ,
Ly/c+ 2L (T /6)" + Lollxg /e + (x5 A, x5/¢)''? <
and, simultaneously,
—A(d)/ec<l
From the continuity assumptions on F (z) we can find an

7 <& /4 such that, for ||z|| < a, where
a=[8T(L,+1)]"?/]27"* = 1|, and |lz — yll<n

Fl2)— F(y)<D= —(1—2" ”4)2<%)2A (%)/1Tc>0.

Finally we choose n so large that

L, —n{l —27Y%9?/32T < — 1,
that, for n = m, Lemma 7 is applicable for § ' = 9/4, and so
large that p,, = ||x, — x§3(-)|| <6/8. In what follows we keep

these choices of #, 7, and ¢ fixed.
Observe that I (1) = LA} + L{d ) + I,(A ), where

Lid) = EJ([1 = x(6/Ax0/A,2)1[1 — H (n/A,n,2)]
X exp{d T*F(Az)})}

I. Davies and A. Truman 2066



Ld) = ET{[1 — (6/A,x0/A,2)1H (n/A,n,z)y(a/A,0,2)
X exp{A “*F(Az)}},

LiA)=EN[1— x(6/A,x,/A,2)1H (n/A,n,2)
X [1 — yla/2,0,2)] exp{A ~?F(A2)}},

where H (1/A,n,z) is the characteristic function of
{zeCol0,T1)||lz — z" ()| <m/A }. We show that I,{1 ), I,(4 ),
and I (A ) are each O (exp{ad ~?}), for some & <0.

First consider /,(A ). Clearly,

L(A)<ET{(1 — H (n/A,n,2)) exp{d ~*F(12)}}
and using the Cauchy-Schwarz inequality
LA)<ET{(1 — H(n/A,nz2)} " *ET {exp{24 ~*F (Az)} }'/~.
From Lemma 7, for an absolute constant K,
Ef{1 — H(n/A,n2)}
<K A /nexp{ — n{l —27V429%/164°T },
and, using the known bounds on F,
Ef{exp{24 ~?F(42)}}
<ET(exp{24 ~’L, + 2L,||z|]*})
= exp{24 2L, }E] (exp{2L,|z||*} }.

From Lemma 8, E] {exp{2L,||z||*}} < 0, if 2L, < ¥/T,
which it is by the hypotheses of Theorem 1. Hence, for con-
stants K ;,K 7, for sufficiently small 4,

[LA )| <K 3(A /)" exp{d ~HL, — n(l — 27 *P9?/32T))
<Ky exp{ —4 7%
We now consider I5{4 ),

Lid) = ET{(1 — ¥(8/Ax0/A2)H (/An.2)y(a/A.0,2)
Xexp{d “2F(Az)}}.

In theintegral above the integration takes place over a subset
of {2eCy[0,T]||[Az — A2" (-)||<7m and ||Az||<a} and hence by
the choice of 5 it follows that

F{Az)<FAZ" () + D.
Therefore
LA )<ET{(1 — y(6/A,xo/A,2)H (1/A,n,2)
X exp{A “HFAz"()) + D)}}.
Now
lAz — Az"()| <7,
Az — xo|| > 6=||Az"(-) — X0 > (6 — 1)
and, thus,
LA )<ET{[1 — x((6 — n)/Axo/A,2"())]
X exp{A “HFAz"()) + D)} }.

It follows that J,(4 ) can be bounded by an (n — 1) dimension-
al Lebesgue integral, viz.,

LA )<(217'T)”2(-2-:—T) - exp{DA —2}
XJI;n—l {[1 = x({6 — 5)/A.xo/A,2"(-)]

Xexp{A “2FAz"(-) — } 2'4,z"} } |z, =0d" "~ 'z,

whered "~ 'z =dz,dz, _,,z, = 2T /n), z, = 2(2T /n), etc.
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Setting z" = A ~w" + x§); 2z, = w, =x, = 0; gives

—n/2
Lid)gA — - 1’(277'T)”:"(2—7ﬂ—1) exp{DA 7%}
n

XJR" —1 [ 1— X(a - n:xO)w"(‘) + XS('))]

Xexp{A T2Fw"(-) + xg(-))

— W XM, " + )}
Since n was picked to ensure that p, = ||x, — xg(-)|| <6/8
and 77 <8 /4, it follows that 6 — 3 —p, >6 — 7 — 2p, > 0.

Clearly [lw"()|| <(6 — 7 — p,,) implies ||w"(-) + x5(-) — xo||
<(6 — n)and so

supp[ 1 — X(6 - ﬂ»xo,w"(') + XS())]
Csupp[1 — x16 — 7 — p..0w"(")].

Therefore

—n/2
Lid)<A ~<"*“(27TT)”2(¥) exp{DA ~?}
,XJ- exp{d ~2w"d,w"J }d "~ 'w,
w1 > 8~ 1 —pp

where
_ [Aw"(-) + x5()) — Hw" + x5)4,, (w" + x5)]
w4, w" '

J

The last integral is taken over those w"eR” ~ ' [recall that
w" = (w,,Ws,....w, _,0)] having supnorm greater than
6—n—pa)

By considering separately the cases w"4,w" <c,
w"4,w">c, weprovethatJ<4 (6 — 7 — 2p, )/c. Forthecase
w"4,w" < ¢, we can deduce from Lemma 12 that
Flw™(-) + x3(-)) — Jw" + x5)4,, (w" + x5)

<46 —1—2p,)

Since by hypothesisc > w"4,,w" > 0and we know A4 (-) is nega-
tive, we deduce

J<A6 —n—2p,)/w'A,w'<4(6 —n—2p,)/c.

For the case w"4, w">c, we deduce from the hypotheses on
F, that
IS[Ly + Ly|w"() + x5(:)If?
— Hw" + xg)4, (w"+ x5} /w4, w"
= [Li + Lyfjw" + xg||?
— YW + x5, (Ww" + x5)] /w4, w"
<Ly + Lofjw|* + 2L, Jw[lllxg || + Lollxg 1>
—w'd, w" — w'A,x; — g A, x5}/ WA, w"
<L/w'dA,w* + L,T + 2L,||x3 (T /w"A ,w")!/?
+ L,|[xg || /w"d, w* — § — w"d, x5 /w4, w",
where in the last step we are using Lemma 13 and
— dxo4, x5 <0. Using now the hypotheses L,T <1,
w"A,w">c >0, and the Cauchy-Schwarz inequality w"4,, x?
<[(w4,w")(x54,x5)]"?, we obtain
J< =4+ Li/e + 2Ly||xg (T /¢)'/? + Ly|xg||*/¢
+ (x5 A,x5 /)
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From our choice of ¢ then it follows that
I — <4 (6)/c<A (6 —n—2p,)/c,

proving that /<4 (§ — n — 2p,}/c, whatever the value of
(w4, w").
We have now proved that

- n/2
LA)<A — - "(zﬂ)m(-z”—T) exp{DA 7}
n

X J.
lw™|>6 — 0 —p,

Xexp{A “2w"d,w'd (6 —n — 2p,)/c}d "~ 'w.
Wenowsetv=[—24 (6 — 5 —p,)/c]'?u" =4 ~'ow",
giving the inequality

—n/2
ZWT) exp{DA ~%}

Lid)<v—"~ 1’(217'T)”2(—
n

Xf n exp{ —iﬂ"A’l )un}dn_l,uy
lee™H > (8 — m — pp)d ="

or
LA )<v ="~ Yexp{DA ~%}
XES{[1 = xl(6 — 7 —p. A ~'0,0.27())]}-
However, since ||z|[> ||z ()||
supp[1— (6 — 7 —p, A ~'0,0.2()]
Csupp[1— x{(6 — 7 — p. A ~'0,02)]
and so
LAd)<v ="~ Vexp{DA ~?}
XEJ{[1—x(6—n—p. A " '0,02]}.

We now use Lemma 5 to deduce, for an absolute constant K,
for sufficiently small A,

Ef{[1 —x(6 — 1 —p,v/2,0,2)]}

<K;exp{ — (1 =278 — 5 — p,)v* /44T }.
Finally then, since 7 <8 /4, p,, <5 /8 and A4 (-) is a negative
decreasing function, for X ; an absolute constant
LA)<K 5 exp{d ~2[D+(1—27 436 — 5 — p, )

XA(6—n—2p,)/2Tc]}

<K exp{A "2[D + (1 — 27 Y*4%6/2)°4 (6/2)/2T¢c]}

=K} exp{d "1 — 27445 /2)*4 (6/2)/4Tc}
It remains for us to consider 1,(4 ). This term is relatively easy
to deal with. Evidently

LA)=EI{[1 — x(6/A,x,/A.2)1H (1/A,n,2)
X [1 —yla/4,0,2)] exp{A ~?F(Az)}}
<ET{[1 — x(8/4,0,2)] exp{L,A = + L,||z||*}}

and by the Cauchy-Schwarz inequality
LA )<exp(LiA ) [E{[1 - xla/A,02)1}]""
X [EI{exp{2L,||z|*}}]1""*.
Using Lemma 5 again we obtain for a constant K,
E7{[1 — x(a/4,0,2)]} <K, exp{ — (1 — 27 "/*%a*/4TA ?}

and, since the second integral is convergent for L, < y/27,
by the choice of a
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L{A)<K § exp(d ~2(L, — (1 — 27 "/4?a?/8T )}
=K exp{ -4 7%,

K ; being an absolute constant. This proves Lemma 14 with
a=max{ — 1,(1 — 2745 /2)?°4(6/2)/4Tc} <0. OO

Lemma 15 (Schilder): If x (7) is of bounded variation on
[0,7] and if

fo eyl dr — f xg(r) dylr) = O,

feL?[0,T], forall yeC*[0,T],
then

[ revnar— [ xsimapier =0,

for a.e. yeC,[0,T].
Proof: If x{(7) is of bounded absolute variation, imitat-
ing a theorem of Nelson,? for a.e. yeC,[0,T],

T T
[ s = - [ sinasiin
0
Hence, for a.e., yeC,[0,T],

[ jOTfmy(r) ar— [ xitriasto|

is realizable as a continuous linear functional, which is zero
on the dense subset C*[0,7]. a

B. Proof of Theorem 1

For brevity in what follows let f;(7)2 denote
D'F(x, + n){z,z,...,2)//}, where D/F is the jth Frechet deriva-
tive F at the point (x, + 7), the bracket containing j argu-
ments, j = 0,1,2,--- .

Choose 6 > 0 such that the hypotheses on F hold. Let
Ef{exp{A ~*F(A2)]} = hy(A) + hy(4), where

hi(A) = ET{x(6/A,x0/A,2) exp{A ~2F (A2)}},

hy(d) = ET([1 — y(8/A,x0/4,2)] exp{d ~°F(iz)}}.
From Lemma 14 we deduce that A,(1 ) = O (exp{ald ~?}),
where a <0, and so for any integer n, 4,(1) = O (1" ~?).

Using a Cameron—Martin type translation,>! we arrive
at

hid)= exp[ - _ZJ: [x5(7)]? dr]

X ]Ef{x(&//i,o, ¥) exp{ —A! LTX(') (7)dy(7)

+ AT Ay +x0)”.

From Taylor’s theorem for functionals we may write
F(Ay + xo) = F(xo) + ADF (x,)y
+ A2D?F (xo)( , y)/2 + ky(Ap)
= fol0) + AA{O)y + A %(0)” + ks(Ay),
where |k,(Ap)| = O (A7), if [|Ay]|<6.
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“mity=ew| —12 [ s dr+ o)
XE {X(é//l,O, ¥)
xexpt ~'( Aoy - [0

Xexp{ fH0p* + 4 ~*ks(dy)] }

By hypothesis

(Fe-= [ e ar)

has a maximum of O at x, over C¥[0,7"], so it and its first
Frechet derivative are zero at x,,. Thus,

£{0 — f x)(r) dy(r) = 0,

for yeC*(0,7 ], and so by Lemma 13
hy(A) = ET(x(6/4,0,2) exp{ £(0)2" + A ~k;(A2)} }.

The Taylor expansion of exp(x) reads

n—1

explx) = 3 X'/ + R, (x),

i=0
where
"/n! , if x>0,
anl(XK[x nn exp(.x) >
|x|"/n!, if x<O.

We may now write A,(4 ) in the form

mid) =S (1/8) E(x(6/4,0.2)

i=0
X exp{ fo(012°} [4 ~%k5(A2)]} + 7, _.(4),
where denoting the characteristic function of the set
{zeC,[0,T]|k4(A2)>0} by B(4,2)
W 2(A)|<V/(n — 2)E] (x(6/4,0:2)|4 ~*ks{Az)|" ~*
Xexp{ £(0)2% + 4 ~?k;(A2)} B (4,2)}
+ 1/(n — 2ET{(x(6/4,0,2)|4 ~?k;(Az2)|" ~?
X exp{ £,(0)2%}[1 — B (A.2]]}.
From Taylor’s theorem for functionals it follows that, if
|IAy|| <6, then
A2 [HO0W* + ks(dy) = koldy) = A * fon)y*,meCol0,T]
with |7 <8, where by hypothesis |k3(4y)|<C:A || yi’, Cs
being a constant. Thus,

o =2l )I<1/0n — 2ET(r{8/2,0.20(CA =2l

Xexp { fo(n)z*} B (4.2)}
+ 1/(n = 2ET{x(6/4,02)(C,A )" 3|z =2
xexp { £,(0)2°}[1 — B(4,2)]}
By using the Cauchy-Schwarz inequality (or Holder’s ine-
quality} and condition 5 of Theorem 1 we have thatJ, _,(4)
=0A" 3.
We have now proved that

n—3

hid) =Y (1/0)ET((6/4,02)

i=0

Xexp { /(012°}[A ~?k5(A2)]'} + O (A" ?).
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However, ky(z) = A3 f4(0)2 + -« + A"~ f, _,(0)" !

+ k,(Az), where A ~%k,(Az) = O (A "~ ?||z||"), for ||Az]| <6,
expanding by the binomial theorem, therefore gives, using
condition 5 of Theorem 1, and Holder’s inequality

n—3
hA)= z (1/MEI{(x(6/4,0,2)

i=0

X exp { /02°} [A £5(0)2° + -

+/{ n—lf;'_l(o)zn—-l]:} + 0(/1 nAz)'
It can be seen from the Holder inequality, Lemmas S and 8,
and condition 5 of Theorem 1, that, for sufficiently small A,

n—3

I (I/AET([1 — x(8/4,0.2)] exp{ £+(0)2%} [A£+(0)2 + -~

...,{"‘3‘["__1(0)2"_]]"}
=O(P(A)exp{ BA 2})=0(A"7?),

where Pis a polynomial and 3 is a negative constant. Replac-
ing y by [1 — (1 — y )], we finally obtain

n—3
hid)=S (I/NET(exp{ £,(0)?)

i=0

X [AL02 + A" f,_, (0" ']} +0(A" 73,
0 that

hA)=Fg+ T A+ +T, ;A" 3 +0A"?,

where the I'; are dependent only on the Frechet derivatives
of Fat x,, for i = 1,2,...,(n — 3). This completes the proof of
the theorem.
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We consider differential ideals generated by sets of 2-forms which can be written with constant
coefficients in a canonical basis of 1-forms. By setting up a Cartan—Ehresmann connection, in a
fiber bundle over a base space in which the 2-forms live, one finds an incomplete Lie algebra of
vector fields in the fibers. Conversely, given this algebra (a prolongation algebra), one can derive
the differential ideal. The two constructs are thus dual, and analysis of either derives properties
of both. Such systems arise in the classical differential geometry of moving frames. Examples of
this are discussed, together with examples arising more recently: the Korteweg~de Vries and

Harrison—Ernst systems.

PACS numbers: 02.40. + m

I. INTRODUCTION

When Cartan’s method of moving frames is applied to
classical problems of differential geometry, a quite specific
type of differential ideal is often presented for analysis and
solution.' These ideals are generated by sets of 2-forms, and
have a canonical structure inasmuch as they are expressed in
an (anholonomic) basis of 1-forms in which all their terms
have constant coefficients. Such ideals are, in fact, derived by
specializing the closure relations that are fulfilled by the left
or right invariant 1-forms in the spaces of Lie groups. They
can be analyzed systematically for invariances, conservation
laws, Backlund correspondences, etc., and their integral sub-
manifolds classified by computation of Cartan’s local alge-
braic characters.” Depending on how dependent and inde-
pendent sets of sets of variables are introduced, they give rise
to various elegant sets of coupled nonlinear partial differen-
tial equations. The sine-Gordon equation is only the most
famous of these.

It seems that the sets of nonlinear evolution equations
more recently treated with techniques such as inverse scat-
tering and prolongation, in which auxiliary variables are in-
troduced satisfying linear “connection” equations, often can
be derived from differential ideals which are of the same ca-
nonical type. The prolongation structures that result are in-
deed already known to involve incomplete Lie algebras;
these “prolongation algebras” are dual to (and in a certain
sense, as we will see, more general than) the canonically ex-
pressed ideals.

In the following we illustrate this bringing together of
classical and modern problems by discussing some famous
examples from a unified standpoint. First, the classical dif-
ferential geometric problem of immersing a surface of con-
stant negative curvature in Euclidean 3-space has been ele-
gantly expounded by Chern and Terng,” as an introduction
to some nice generalizations of this problem to affine and
higher dimensional spaces: We discuss the analysis of the
canonical ideals that arise in the simplest case, staying close
to their notation (but not being concerned with any construc-
tions based on ideas of Euclidean metric or parallel trans-
port). It is instructive how prolongation algebras, Bicklund

“Research carried out under Contract NAS7-100, sponsored by the Na-
tional Aeronautics and Space Administration.
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transformation, and permutation theorems arise.

Second, we give some new results based on the prolon-
gation algebra of the Korteweg—de Vries equation.* A ca-
nonical ideal for this system is given, in an anholonomic
basis in a seven dimensional group space, and a new expres-
sion of the Backlund transformation results.

As a final example, we briefly discuss Harrison’s ideal
for the Ernst equation® and give its prolongation algebra.

Il. IMMERSION IDEALS

We consider first a six parameter Lie group that is built
upon the 3-parameter rotation group O, and that in fact
expresses application of moving orthogonal frames to Eu-
clidean space. But for the most part, we will refrain from
such interpretations and simply take the group, and others
related to it, as given for analysis. In terms of six basis 1-
forms 6','i = 1,2,3, the set of 2-forms

do' + wrANO* - P NB?,

d8*+*N0' — ' NG,

df® +w'NO* —* NG,

do' + 0* \Nw?,

do’ + 0’ No',

do’ + o' A&?,
generates a closed differential ideal, 7. If, in a space of six
dimensions, the forms in Eq. (1) were to vanish identically,
the basis 1-forms 6 ‘,»' could be called left-invariant, and the
space (locally, at least} identified with the group space. A set
of canonical ( 4 1 and 0) structure constants for the group
can be read off from Eq. {1). The Jacobi identies for these
follow from the closure property.

A dual vector (Lie) algebra to Eq. (1) is found by prolon-
gation.*%® Denoting the six basis forms collectively as 7
(n' = 86", etc., n* = @', etc.), spanning a base space, we intro-
duce an unspecified number of fiber coordinates y4,

(4 = 1,...), and an equal number of connection 1-forms

dy' — XAy " @)
The X /! are introduced as functions only of y%, and the prod-
uct form of the second term in Eq. (2) is characteristic of

principal connections.® By requiring that the exterior deriva-
tives of the connection forms in Eq. (2) be in the ideal gener-
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ated together by Eq. (1) and Eq. (2), a set of partial differential
equations in commutator form is found for the functions X ;
these can be written as Lie brackets of vector fields in the
fibers, the vector fields being X,, = X/ d/dy". For the pre-
sent case we set X, = X 4(d/dy*), i = 1,2,3, and
U,=X{{8/"), U, = X%(3/d"), U, = X §(3/3y"), and
find that they must satisfy the algebra
[X:.X; ] = € Xe,
4: [X,U]=¢€,U, (3)
[U,U]=0.
€ is the permutation symbol, and repeated indices denote
summation.

Conversely, given the explicit six dimensional Lie alge-
bra 4, Eq. (3), one can introduce forms 7* (that is, 8',0'),
postulate the connection Eq. (2), and derive the set of curva-
ture forms 7, Eq. (1). This duality construction is more gener-
al than simply using an inner product X, -%n* = &;,, as is cus-
tomary in Lie group theory, for in that case the X, are
vectors in the same space as the #*. This duality construction
also generalizes nicely to incomplete Lie algebras, as we will
see.

By putting identically equal to zero one or more basis
forms in the set of curvature forms of a group, one immedi-
ately obtains members of an interesting class of nonlinear
systems. Such systems are (1) generated by a 2-forms having
(in a certain anholonomic basis) constant coefficients, and
are (2) closed under exterior differentiation. Let us call these
canonical systems.

We illustrate this with the simple example of putting
0% =0in Eq. (1). Let us call this the immersion ideal I, (as
defined by a set of generators):
do' + 0*Ne?,
do® + o’ Ne',
do’ + o' \No)?,
dé' —*NG?,
do* +*NB',

o' NG — 0’ N6

We analyze I, by noting that it is possible to introduce
two auxiliary variables f and g (pseudopotentials) so that
there is a closed subset of 2-forms involving exterior deriva-
tives of the five original basis 1-forms. (For anholonomic
basis forms such a subset replaces the usually unwritten
identities ddx’ = O for natural basis forms dx’). The complete
enlarged ideal is
d91 _f(wlAez_szel)__m3/\02’
d0? —g(@' N2 —?AB')+ 0’ NG,
do' + 0* \&?,
do’ + 0’ \o',
do® + o' N&?,
df — fego' + (1 +f 0" — go’,
dg — (1 + o' + fgo* + fo’,

o' NG~ w* N
Cartan’s characteristic integers®'° then follow from consid-
ering as generators in a space of seven dimensions just the

(5)
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two 1-forms and the single algebraic 2-form: s, = 2,5, =1,
s, =1,g = 3. The genus, g, of I,., or I, is thus 3: this is the
number of independent variables in a general solution [or the
dimension of a maximal integral submanifold on which all
the forms in Eq. (4) pull back to zero]. There is, however, also
a Cauchy characteristic vector, which must lie in the maxi-
mal integral manifolds: it could be denoted d /w*, meaning
that its contractions with the 1-forms o', »?, 8!, 82 vanish
and its contraction with > is 1. So with proper choice of
similarity variables the number of independent coordinates
in a resulting set of partial differential equations can be just
two. This is not surprising to those who remember the Gauss
and Codazzi equations resulting from I, when intrinsic co-
ordinates are used in immersed Riemannian surfaces.

From Eq. (2) and Eq. (4) we find the following prolonga-
tion algebra:

[Z, Y] =X,
X,Z] =7,
[Y,X]1=2,
(V,Z1= -1,
A:  (UZ]=V, (6)
[V, Y]=0,
(U, X]=0,
(U, V]=0,

[UY]+[V,X]=0.
This is an incomplete 5-dimensional algebra, dual (and ab-
stractly equivalent) to (4). One explores such algebras by sys-
tematically introducing new vectors and using the Jacobi
relation. In this case the definition
vXxl=w
leads directly to the closed Lie algebra Eq. (3). In this way, if
I, were first given, we would find that it can be derived from /
by setting a basis form to zero.
Lastly, consider the immersion ideal for surfaces of con-
stant negative curvature,® I:
do' + 0* Nw?,
do’ + 0’ Ne',
do® + o' No?,
Iy: d8'—o*N6?, {7)
do* + w0’ NG,
0' N0 —* NG,
o' No® +60'NO
One easily checks that this is closed, and thus is what we
have called a canonical system. The Cartan characters, in
seven dimensions (again prolonging with fand g ) ares, = 2,
5, =2, 5, =0, g = 3. It does not, however, appear that I,
can be derived from a finite dimensional Lie group by equat-
ing basis forms to zero. In fact, the dual prolongation algebra
toly is

X,Z1=Y, [Z2,Y]=X,
[U’Z]'—_'V’ [Z’ V]=U,
Ay: [U,X]1=0, [V, Y]=0, (8)

wvi—-ix,vyl=2
(v.x]+[UY]=0.
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By introducing more vectors by definition, and using Jacobi
relations, enlarged algebras are found, but closure of the al-
gebra 4, Eq. (8), in a finite number of such steps does not
appear to occur. Dual sets of forms to such enlarged algebras
can always be reduced to I, by setting the additional basis
forms to zero, but they still will include purely algebraic 2-
forms. Perhaps the canonical differential systems we are
dealing with can all be regarded as derived from the closure
relations of infinite dimensional Lie groups, by setting all but
a finite number of the invariant basis forms to zero, but this
remains to be shown. [Peter Gragert (private communica-
tion) has found several finite Lie algebras which arise from
“closing™ 4, with additional relations. For example, one
suchis[Y, [¥, U]] = 0;in that case one derives a nine-dimen-
sional algebra, and one finds the ideal 7, generated (or spe-
cialized) in a nine-dimensional group space by four (basis)1-
forms and two algebraic 2-forms. s, = 4,5, =2, g = 3}.

11l. THE BACKLUND CORRESPONDENCE

The next step in the classic analysis is to observe that,
because /,, already has a Cauchy characteristic vector, a pro-
longation 1-form can be added to /,, without introducing
any additional prolongation variable. The 1-form used by
Chern and Terng is

¥ =02+ sin7w* + cos 7 w?, 9)

where 7 is an arbitrary parameter. Let us denote this aug-
mented ideal as I, (B for Bicklund):
do' + o* ANo’,
do® + 0’ Ne',
do® + o' No?,
do' —*NB?,
d6* +w* N6,
82 +sin 7w + cos 7 w?,
w' N0 — o’ NG,
@' Nw® +6'NG>
Now (in five dimensions) s, = 1, s, = 2, g = 2. We assert this
since if, as before, we include also variables £, g and the two 1-
forms involving them, and call the completed augmented
ideal in seven dimensions /., then forit s, = 3,5, = 2,
g=2

The vector field d /@ is a subcharacteristic’ of 1., be-
longing to the closed subideal /,,.. Remarkably, there is a
second, belonging to an isomorphic subideal, which we next
write. There will be a Bicklund correspondence between so-
lutions of these subideals exactly as occurs for the KdV ideal
treated in Ref. 7.

The isomorphic subideal emerges upon introduction of
new basis forms according to the transformation

9'* ="' +sinrf*y,
0% = — o+ ¥*,

60‘* — wl,

(10)

0** =cos 7@’ +sin 7 &,
w** = —sinT7@? + cos T &, (11)

S[*=Ff/{cos r — g sin 7),
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g* = (sin 7 + g cos 7)/(cos 7 — g sin 7),
where

w*=fr*P/f (12)
The first of these relations are in Chern and Terng-—relating
forms at different locations in E *. Here we rather interpret
them as a local change of basis in a 7-space.

It is now readily computed that an algebraically equiv-
alent set of generators for I, in terms of these new gener-
ators, is
do'* + o** Nw’*,
do* + o’* Aw'*,
do** 4+ o'"* ANw**,
d8'™* — fHw'"*NO** —0** NO'*) — 3* NG,
dB** —g*w'*NO** —0™* NO'*) + 0>* NG ¥,
df"‘ -—f"‘g“a)"" + (1 +f#2)w2t —g"‘a)3*,
dg* - +g*2)a)1* _+_f*gtw2t +ftw3#,

0" *ANO* — NG H,

o N 4+ 0¥ NG?*,

Y*=07* _sin r 0>* + cos 7 0?* .

The first nine forms in /;. in Eq. (13} are identical in form to
those in 7,,. as first introduced: they may be written starred
or unstarred, and transform into each other through Eqgs.
(11) and (12)! The 1-forms ¥ and ¥ * are related by a scalar
factor, Eq. (12), and are a connection form. The last 2-forms
in Eq. (13) are a closed subideal, in the ideal of ¥ and the last
two 2-forms in Eq. (10}, and conversely. The second subchar-
acteristic is d /w**; written in the unstarred frame it is

d

. d . d
s1n27'f—-0;1——sm7'—2+cos¢—7
) o

(13)

— sin 7(cos 7 — g sin 'r)—g-z—. (14)

V. SINE-GORDON EQUATION

Knowing that the search for two-dimensional integral
submanifolds of I, (or I ;. ) is a well-posed problem, one next
explores the resulting partial differential equations. Above
we have taken the view that the first five forms in I; (or the
first sevenin /. ) can be set identically equal to zero, so defin-
ing a basis set in a space, and then we considered the remain-
ing algebraic forms as fields there. Now it is appropriate to
take precisely the opposite tack, and introduce “intrinsic”
variables. We choose an algebraically degenerate coordinate
representation of the basis forms in terms of two to-be-inde-
pendent variables ' and #?, writing the autonomous basis
forms du' and du?, such that the second set of forms in I p 1S
identically zero, and the p.d.e’s arise from annulling the first
set.

Since, inter alia, ¥ (or ¥ *)is now taken identically zero,
we can use the Biacklund correspondence of Eq. (11) of Sec.
III to introduce the to-be-dependent variables symmetrical-
ly while ensuring that the last two algebraic 2-forms also
vanish identically. It is not difficult to arrive at something
like the following ansatz although, of course, the particular
dependent variables and notation that we adopt, « and ¢,
conform to Ref. 3.
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0'=6" = cos ¢ cos adu’ + sin ¢ sin adu?,

—w** =0%= — cos ¢ sin adu' + sin ¢ cos adu?,
—0°* =w* = —sin ¢ cos adu’ + cos ¥ sin adu?,
o' =w'= —sin ¢ sinadu' — cos ¢ cos adu?, (15)

sin 7w* = (cos ¥ sina 4+ cos7 siny cos a)du’
— (sin 3 cos @ + cos 7 cos ¥ sin a)du?,
sin 7w** = (sin ¥ cos @ + cos 7 cos ¢ sin a)du’
— (cos ¥ sin @ + cos 7 sin ¢ cos a)du®
Substituting these into the first five 2-forms in I gives just
two forms,

(d — da) A (du’ + du?) + L7 G + aldu Adu?,
sinrt

and (16)

(i + da) A (du' — du?) — L= Gin — ajdu’ Adi?,

J

[Xsz] =X7, [XDX'I] = —XSv

from which sine-Gordon equations for ¥ and & immediately
follow. A final remark: If the forms in Eq. (16} are taken by
themselves as a rather elegant ideal for the s-G equation, the
characters in 4-space are s, = 0,5, = 2, g = 2. The Bicklund
transformation can be seen as an involutory inversion: either
6',60%0" w8, — w*w', — 82 orin terms of coordinates
a, ' wror — o — au’ ul

V. THE KdV ALGEBRA

Although to one using moving frames in E * the above
local manipulations of already familiar relations may seem
superfluous, it is my contention that these methods are of
much more widespread applicability, in contexts far re-
moved from those of metric geometry, in fact whenever ca-
nonical ideals of 2-forms arise. In Ref. 4 the following pro-
longation algebra was derived, beginning with the Kortweg—
de Vries equation in its usual coordinate form (the sign of X,
has been changed from Ref. 4):

[Xz»X7] = - Xé:

[X1»X3] = [Xz’Xs] = [Xst3] = [X(,»Xa] = [X7>X3] = [Xl,AX‘a] = [Xz,X(,] =0

Agy: [X2>Xs] — [X,X¢] = 0,
[Xl’XS] + [Xz,X«s] =0,
[Xz’Xd + [stX«s] + [XnX(,] =0.

From this incomplete seven vector algebra, and Eq. (2),
we find the following canonical (set of generators of an) ideal,
in terms of seven basis 1-forms 7,/ = 1..7:

N '=dy',
N 25(1772,
23=dnp?,
02 4=dn?,
ﬂsEd’l]S _ 771 /\7’]7 + 7]5/\777,
02 5=dn® — *An’ — ,'76/\777’
IKV: 07Ed777+7’1/\772+771/\7]6+7]2/\7]5—7]5/\776,
Sl=p'Ap® + 7* A7’ _173/\,)74__775/\176’
2257]] /\775 - 772/\174,
235174 A 775’
2451]4 /\ 7’6’
255774 /\ 117,
I=n’ A7 (18)
We denote the first seven, £2 *--£27, curvature forms, inas-
much as they are a closed set in themselves. No auxiliary
variables f,g,... need be sought as already I, can be inter-
preted as a set of algebraic generators 2'--26 in a group
space of seven dimensions, spanned by left invariant 1-forms
n". The Cartan characters are s, =0, 5, = 5, g = 2. Two-
dimensional integral submanifolds are maximal.
To find the KdV equation we now, as above, search for
a degenerate expression of the basis forms % ‘ in terms of two
to-be-independent variables, say dx and dt, and 14 to-be-
dependent variables u',v’; that is, we write 7' = w'dx + v'dt,
and then require the '’ tobe related so that =',...,2° vanish
identicaily. It then turns out that in the £2° either ' or n*
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[Xs»X7] - [Xz,X7] =0,
[X,,.X] + [Xs.Xs] =0,

loccur in each quadratic term, so a further allowable special-
ization is to take 7' ~dx and 77* ~ dt. We now are reduced to
seven “intrinsic” variables, and assign these without further
loss of generality to conform with previous notation
(u,z,p,w,v) for the KAV equation:

' = — 2dx,

n? = — 2udx + 2(p + 6u*)dt,

7 = — 2 + u’)dx — wdt,

7t = — 8dt, (19)
7’ = — 8udt,

7® = — 8udt,

7’ = dzdt.

It can be checked that =!...2° vanishes identically.

Five coupled partial differential equations result from
annuling the curvature forms 2

u, =z,

z, =p+2u’—4v,

v, = uz, (20)

w, —2(v + u?, =0,

(p + 6u?%), +u, =0.

Other choices of variables will give very different equations.
7* and * also occur such that they can be specialized to dx
and dt— this would presumably be a sort of hodograph
transformation of the system. The essential point is that all of
this is contained in the algebra A, Eq. (17).
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VI. BACKLUND TRANSFORMATION OF THE KdV
ALGEBRA

Equation (2) for the KdV system has a 1-dimensional
solution

dy —n* —n°+yn’ —1y'm' — ). 21)
Specializing this with Eq. (19) one finds the modified KdV
for y. Another way of introducing the simple pseudopoten-
tial y is to search for one-dimensional representations of A
by setting X, = X,(y)(3/dy), etc. The fact that a solution ex-
ists shows that SL.{2,R ), the only nontrivial group on aline, is
a homomorphic image of 4,,:

a
X, =4y*—,
=4y a
5 a
X - T
2 3y
X~3=0,
X, =0, (22)
= a
X5= —5)’25,
= a
X - T
6 ay
= d
X,=—y—.
7 yay

The Bicklund correspondence previously derived*!*
takes the general form

1’1. - — 7’1,
=yt =y’ + 20— 2,

Pr= — %y-t,”l ~ 3 — P+ §y4775 — 325 + 3Py,
7= -7,

7°* =y + 7, (23)
7 = — 1y —y’n° — %,

= —yut—2m° -7,

The ideal I, Eq. (18), when augmented with the connec-
tion form Egq. (21), is invariant under this linear transforma-
tion of basis forms.

The algebra 4, Eq. (17), is invariant under the inverse
linear transformation, which in this case turns out remark-
ably to be just the transpose (the transformation is
involutive!):

Xt=—X,+yX,—3y'x>,

X1 =X,- 3%,

Xt=-X,,

X=X, +yX;s— 5)’4X6 - y'X,, (24)
Xt = —yX, + 30X, + X5 — X, — X,
Xt=2X,-3X, - X,

Xr= —2X, + 3’X, — X,.

Now one regards y as a function in the space of the X ’s, with
directional derivatives that can be read off from Eq. (22).
There are also two invariance transformations of the
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prolongation algebra 4, or of I, that have constant fac-
tors, and that express scale and Galilean invariance; they can
be used to introduce the well-known “eigenvalue” param-
eter in Eq. (23) or Eq. (24). (These isomorphisms of I, or
Agy, have independently been found by Shadwick.*)

VIi. THE HARRISON-ERNST SYSTEM

B. K. Harrison® has shown that solutions of the Ernst
and related equations of general relativity are two-dimen-
sional integral submanifolds of the following ideal:

dé, — &1 N\és
dé, — E;NEs+ E2NSs
dEs — EsNEs+ E Ny
dSs
dbs,
I de + Es N Es,
SING+ENE,,
ENEs+ &N,
E3NEs+ENEs
ENE+AE NE,,
SINEs+ A& NE
SaNEs + A5 N6 AL 1
For the Ernst equation, A = — 1. This is closed, and indeed
of our canonical form. The first six 2-forms are closed by
themselves, so we may take n = 6. From the rest we calcu-
lates, =0, s, = 4, g = 2. Using Eq. (2), we find the following
prolongation algebra:
[X,.X;] + X5 =0,
[Xl)XS] - [Xz,Xd - Xz =0,
[Xst] ~-A [Xz»Xe] =0,
A X X;] — (XX, ]+ X, =0,
(X1, X6] ~ [X,X5] + X, =0,
[Xs,Xsl - [X4)X6] —X;=0,
[Xs,Xd =0,
[XX5] — 2 [X3.X6] =0,
(X5, Xs] + X;=0.
This algebra has also been derived by Harrison.!2 We present
no further analysis here, but remark that Harrison and oth-
ers have recently found Bicklund transformations and other
elegant properties for this system. We offer in closing the
speculation that such elegant properties are always proper-

ties of nonlinear systems that can be expressed as incomplete
Lie algebras.

(25)
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Several differential-geometric points of view on analytical mechanics of systems.with a finite
number of degrees of freedom are developed in generality, emphasizing Cartan’s calculus of
differential forms and Ehresmann’s theory of jet spaces. The classical theory of Lagrange’s
equations with external forces and constraints (“holonomic” or “nonholonomic”} is put into an
invariant and coordinatefree form. The relation between this “‘Lagrangian® and the
“Hamiltonian-symplectic” approach, which is that most extensively used in the contemporary

mathematical physics literature, is also developed.

PACS numbers: 02.40. + m, 03.20. + i, 02.30.Wd

1. INTRODUCTION

One of the interesting mathematical developments of
the last 20 years has been the revival within the context of
professional mathematics of the classical subject of analyti-
cal mechanics. This has been “‘geometrized” and some classi-
cal problems have been profitably examined in a new light.
The treatises by Abraham and Marsden’ and Arnold? are
now the standard references for this material. Perhaps most
important, the links between analytical mechanics and
quantum mechanics have been made more precise.

However, this work has only penetrated into the tradi-
tional problems of particle mechanics. Not as much has been
done with the much more complicated problems of general
mechanical systems that are encountered in the applied parts
of the physical sciences and engineering. There has as yet
been little work geometrizing in the same spirit the so-called
nonholonomic mechanical systems. My aim here is to show
how a contemporary version of Elie Cartan’s methods® (par-
ticularly utilizing the work of Ehresmann®) may be used to
describe such mechanical systems. The modern geometric
point of view also suggests certain further extension and ap-
plication of the work on mechanics that was developed in the
framework of classical tensor analysis, especially the work of
Gabriel Kron® and a group in Japan led by Kondo® called the
Research Association for Applied Geometry (RAAG).
Some of the material presented here has been touched on in
my own work.”®

Another motivation is to revitalize the Lagrangian (i.e.,
the calculus of variations) point of view. In the mathematical
work cited above'? it has been found convenient to empha-
size the Hamiltonian picture, whereas the classical trea-
tises™'" are primarily Lagrangian. (Differential geometrical-
ly, the Hamiltonian involves the cotangent bundle, the
Lagrangian the tangent bundle.) No doubt, this is because of
the role that the cotangent bundle (with its “symplectic
structure”) plays in quantum mechanics and the theory of
linear partial differential equations. Now, in working ele-

*'Supported by Ames Research Center (NASA), Grant NSG-2402; U. S.
Army Research Office, Contract #I1LI61102BH57-05 MATH; NSF
MCS8003227.
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mentary mechanics problems (and handling constraints) it is
much easier to use “velocities” rather than “momenta,” i.e.,
the Lagrangian rather than the Hamiltonian point of view.
Further, Lagrangian methods are much simpler for intro-
ducing certain types of interactions between systems. (This is
why Lagrangian methods still dominate in elementary parti-
cle physics.) Thus, I intend this paper to serve as a founda-
tional treatment of the Lagrangian point of view, with
further applications to be developed in later work. Among
these applications, those arising from recent work in control
theory'>"'S on feedback linearization of nonlinear mechani-
cal systems, should be especially noted.

Since the methods of the theory of Pfaffian systems are
basic to this approach to mechanics, and are not at all well
known to physical scientists, I begin with a brief explanation
of some of the basic concepts, assuming that the reader
knows the fundamentals of “calculus on manifolds,” i.e., the
theory of vector fields (together with associated Lie group
theory) and differential forms on finite dimensional C =
paracompact manifolds.

2. PFAFFIAN SYSTEMS

The notation of calculus and manifolds are those of Ref.
7. All manifolds, maps, and geometric data will be C =, finite
dimensional, and paracompact, unless mentioned otherwise.
Let X be such a manifold. Here is the notation we shall use
for the basic objects of the calculus of manifolds used in this
work.

F (X ) = algebra of C =, real-valued functions on X.
For x € X, X, = tangent vector space to X at x.
X ¢ = dual space to X,
= space of one-covectors at x.

TX)={xv):xeX, VelX,}

= tangent vector bundle.
T°X)={(x0):xeX,0c X}

= cotangent bundle.

7(X) = C = cross sections of T(X)

= derivations of . (X ).
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D '(X) = cross sections of T¢(X)
= dual ¥ (X ) module to 77(X).
= space of one-differential
or Pfaffian forms.

27X ) = exterior differential forms of degree n.
d:-D"X)— D"+ (X), exterior derivative
(Vo Vo) = [V, VL] = ViV, — V,V,, an R-linear map

[ 7 X)X Z(X)— ¥(X), called Jacobi bracket.

If 8 is a differential form and ¥ is a vector field, then
ZLy(0)
denotes the Lie derivative of 6 by V.

G ™(X,) = Grassmann manifold of m-dimensional
linear subspaces of the vector space
X.,m=012,..

G ™(T' (X )) = the fiber bundle over X whose fiber over

xeXisG™MX,).

G ™(T*(X)) = bundle of m-dimensional

linear subspaces of the cotangent
vector spaces.

If E—X is a fiber space over X, let I" (E ) denote the space of
C = cross section maps: X—E.

Definition: A Pfaffian system'®?® (of dimension m) on X
is a cross-section map

y: X—G™(T (X)),

i.e.,, an elementof I' [G ™(T(X))].

Given such a cross section y € I' [G™(T (X ))], one can
define the “‘dual” object.

yel[G"~™TX))],
y 4{X ) = space of 6 € X ¢ such that 8{y{x}) =0
= annihilator of y(x) in the dual space.

¥ 4 is actually the object Cartan would call a “Pfaffian sys-
tem,” since he preferred to work with differential forms rath-
er than vector fields. However, we will call either y or ¥ “ a
“Pfaffian system.” (When we consider such systems with sin-
gularities, it is necessary to distinguish one from its dual.)
Notice that  ¢is an .# (X ) submodule of & (X ). It is locally
free in the sense that each point has a neighborhood in which
the module has a basis. Often, it is convenient to use quasial-
gebraic methods and notation when dealing with these ob-
jects, particularly when the methods of the theory of sheaves
and schemes are to be utilized. (However, in this work we
shall not use these methods.) It will often be convenient nota-
tionally to identify Pfaffian systems with such modules. For
this purpose, we shall often use the notation & for the mod-
ule of differential forms and 7~ for the dual module of vector
fields.
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3. THE DERIVED SYSTEMS OF A REGULAR PFAFFIAN
SYSTEM

Keep the notation of Sec. 2. Let
vel [GHTM))]

be a Pfaffian system interpreted geometrically as a cross sec-
tion of the Grassmann bundle of m-dimensional linear sub-
spaces of the tangent vector bundle to X.

Set

7" (y) = the set of vector fields ¥ €77(X ) such that
Vix)eyix)forallxe X . (3.1

Thus, the orbit curves of the Pfaffian system are the curvesin
X that are orbit curves of some vector field on 77(y). [Note
that 77(y)is not a Lie subalgebra of 77(X ), unless the Pfaffian
system is completely integrable in the Frobenius sense, i.e.,
defines a foliation.]

Set

7' =7+ [P 7 () (3:2)
For x € X, set

7'ix) = 7 ylx). (3.3)

Thus, y'(x) is a linear subspace of the tangent space that
contains ¥{x}. As x varies, we get a family x—y(x) of tangent
spaces. Let us say that y is one-regular if the dimension of
these spaces is constant. In this case, y' defines another Pfaf-
fian system, which is called (by Cartan) the first derived sys-
tem.

Similarly, set
70 =7+ 7, )+ 170 [, 7 11L34)
¥ *x) = 77(y)(x). (3.5)
Let us say that y is two-regular if it is one-regular and if

dim y *(x)
is constant as x ranges over X. In this case, ¢ 2 defines a
Pfaffian system called the second derived system. Continue in
this way to define the nth derived system. The original sys-
tem y is said to be regular if all its derived systems are regu-
lar. In this paper, we shall consider only regular systems.
(One can prove that, in general, there is always an open sub-
set of X on which the system is regular. If the system is real
analytic, this subset is also dense in S, and its complement is
contained in analytic varieties of lower dimension.)

In many of Cartan’s papers of Pfaffian systems, the
study of the properties of the derived system is the key fea-
ture. We now turn to the study of the structure tensors, which
live on the vector bundles associated with the derived sys-
tems.

4. THE STRUCTURE TENSOR OF A REGULAR
PFAFFIAN SYSTEM

Continue with ¥ as a regular Pfaffian system on a mani-
fold X, considered as a cross section of the Grassmann bun-
dle. Let ¥',7 2,... denote the derived systems. For x € X, we
have an increasing sequence of tangent subspaces:

X)) Cylx)Cy 2x)Coee
Then ¢!,y 2,... also define vector bundles over X. These
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are the pullback of the standard vector bundles over the
Grassmann manifold. For convenience, we will make no no-
tational distinction between the ¥’s as cross sections of the
Grassmann bundles and as vector bundles over X.

Set
E\(x) = y'(x)/1x),
E%x) =y Yx)/y'\(x), (4.1)

Each E '(x), E ?(x),... is a linear vector space. As x varies, they
define vector bundles E ', E *,... over X. They play a basic role
in the study of the structure of Pfaffian systems.

We shall now define structure tensors 7,7 2,..., which
are tensor fields associated with the vector bundles defined
by ¥',9%...and E', E*...

To define 7', again work at a point x of X. Pick
Vi, V, € 77(y). Then,

Vi, Valix)

is a tangent vector to X, which lies in y'(x). Consider its
projection mod (x), i.e., as a vector in E !(x). We obtain a
skew-symmetric map

(Vi Vo) — ! Vi, V)
Note now that 7 only depends on the values of ¥, and V, at x,
not on their derivatives. In this way, 7 defines a skew-sym-
metric, bilinear map

7)) X ¥'(x) — E '(x).
Explicitly,

T X)¥(x), Vax))=[V}, V2)ix) mod (x). (4.2)
As x varies, we obtain a bilinear vector bundle map

hyxy—E" (4.3)

This is called the first integrability tensor. Notice that, by the
very definition of E !, 7 is onto, hence it is zero if and only if
the Pfaffian system with which we began is Frobenius inte-
grable.

We can now continue. For V,, V,, V; € 77(y), consider
the triple commutator:

ViV, Villix).
It lies in ¥ %(x). Its nontensorial component can be eliminated
by projecting mod ¥'(x). We thus obtain a trilinear map

7 2X):p(x) X Y1) X Yx) = ¥ 2(x)/V(x)=E *(x).
Now, as x varies, we obtain a tensor field 7 2 as a trilinear
bundle map

yXyXy—EZ>

This procedure can obviously be iterated to obtain nth de-
gree structure tensors

Ty X Xy—E"

We will now discuss in what sense these tensors are
“invariants” for the equivalence problem.
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5.THESTRUCTURE TENSORS OF A PFAFFIAN SYSTEM
AS INVARIANTS FOR THE EQUIVALENCE PROBLEM

Let

y: X— G™T (X)),

Y:X'—G™T(X),
define Pfaffian systems (of the same dimension) on manifolds
Xand X'.

Definition: y and ¥’ are equivalent if there is a diffeo-
morphism

¢: X—X'
such that

Y'(@ (x)) = ¢+ (¥x)),

In words, the natural actions of ¢ on the tangent bundle and
on the associated Grassmann bundles intertwine the cross-
section maps ¥ and ".

Of course, this general definition is not how Cartan and
Lie would think of it! Cartan, for example, would deal locally
with “moving frames,” i.e., locally defined vectors of inde-
pendent one-forms X and X ":

forallx e X. (5.1)

W,
w= : , (5.2)
wn —m
N
o' = : (5.3)
Qn— m

such that, forxe X, x' e X',

yix) = {veX,: o) =0}, (5.4)
YixY={veX, o'W)=0]}. (5.5)

Relation {5.1) now means that there is a (n — m)X(n — m)
matrix M of functions on M such that

0 =Mp" (). (5.6)
If ¢ satisfies (5.1), it also satisfies
(7 () =7 (5.7)

From (5.7) it follows that ¢ acts on the derived systems

¥', ¥,..., the associated vector bundles, and intertwines the
action of the structure tensors. The “algebraic invariants” of
these structure tensors will be “equivalence invariants” of
the Pfaffian systems.

6. THE EHRESMANN JET-CALCULUS. THE TWO-JET
BUNDLE AS A VECTOR BUNDLE OVER THE ONE-JET
BUNDLE

The Ehresmann theory of “jets” of mappings* is essen-
tially a formalization of certain ideas of classical differential
geometry; for example, “orders of contact,” “tangent and
osculating curves and surfaces.” In modern language, it is a
Jfunctor attaching to a pair (¥, X ) of manifolds a sequence
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JOY, X)=Y XX,
JNY, X),

J’();',X),

of manifolds, with a “tower” of fiber space maps naturally
defined:
JOUY, X) T Y, X ). (6.1)

In this paper, which is only concerned with mechanical
systems of a finite number of degrees of freedom, i.e., systems
governed by ordinary differential equations, the main cases
of interest are

Y = T, aninterval of real numbers ¢, say 0<t < w0, (6.2)

X = Q, the configuration space of a mechanical system,
r=0,1,2. (6.3)
Accordingly, I will give the definition and some of the pro-
perties of the theory of jets in this case. Let .#(T, Q) be the

space of smooth maps q:7— @, i.e., the space of curvesin Q.
Introduce an equivalence relation in

Tx#T,Q)
as follows:

(&, g~(", q)
if and only if
t=1',
qt)=q(),
dq dq’

I (t)= ar {t),

dq,  _dq
dt’ ) dt” )
In words, q and q' meet to the 7th order at the value z =¢'.
JT, Q) is the quotient of T X .# (7, Q) by this equiv-
alencerelation. Ifq € #(T, @), 3 "'qisthemap T— J (T, Q),
which assigns to 7 € T the equivalence class to which it be-
longs. It is called the rth prolongation or r-jet of the map q.
Since contact to rth order implies contact to (r — 1)st
order, there is a “forgetting highest derivatives” map

JUT, Q)—>J ~YT,Q).

This is readily seen to be a fiber space map, i.e., a submersion

which is a local product. Goldschmidt and Sternberg have

shown?’ that each of the fibers has an affine structure, which

(passing to the quotient) defines a vector bundle structure.

We will now directly construct the vector bundle structure.
Let us restrict attention to the case

r=2

which, of course, is the most important for mechanics.
Let

¢7T—Q
be a curve in Q. Let d 'q be its one-jet. It is a map
T—J\T, Q).
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Assign to (1,g) the tangent vector to the curve +— J'q. Itis an
element of

INT, Qe »
the tangent vector spaceJ (T, Q )atthe pointd 'q(t ). Call this

 (1,q).

This map ¢ is constant on the equivalence classes (for r = 2)
which define J%(T, Q), hence ¢ passes to the quotient to de-
fine a map

&:JAT, Q) =TV (T, Q)). (6.4)
(The right-hand side is the tangent bundle to the one-iet
space.)

Another form of the vector bundle structure of J %(T, Q)
will be more convenient for physical purposes. Let

X=JNT, Q).

Let

mJNT,Q)—Q (6.5)
be the natural projection map. (7 is the “forgetting” map

J'-J°=TxQ,
followed by the Cartesian projection T X Q — Q). Let E be
the tangent vector bundle to Q pulled back to X via the map
7. Explicitly, a point of E is a pair

(x, v)
with

xeX, ve@,,-

Theorem 6.1: J (T, Q), considered as a vector bundle
over X = J (T, Q),is naturally isomorphic to the vector bun-
dle E.

Proof: Consider the map &, introduced in formula (6.4),
followed by the map

7 TX)—>T(Q)

It is readily verified (left to the reader) that this is the natural
isomorphism required for Theorem 6.1.
Now, let us assume that

@=R"
so that we can use the notation of mechanics books. For

general manifolds, this is equivalent to working within a
fixed local coordinate system. One can now define map-

pings:
JUT,Q)—>R"XR"XR,
jl(Q)(t) g (q’q’t )s
JHT, Q) —>R"XR"XR"XT,
jz(q)(t ) i (q’q»é’t)

as follows:

qlq.2) = q(t),

, dq
’t =—1|t »
9(q.,2) o ty
dlgt) = (d *qldz *)t)).
Wewillcall{g,4,f )and (¢,4,4,¢ ) the Newtonian coordinates for
JYT, Q), JAT, Q). (Physically, g is, of course, velocity, § ac-
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celeration.) 7 is then defined as follows:

mq,9,4:t ) = (g:4:¢ ).

Two points of J 2 go into the same point of J ! if and only
if their (¢,4,¢ ) coordinates are the same.

Suppose now that qis a map 7— Q given in the classical
style by t— q(t). d 'q is the map

t— (q(¢), dg/dt, 1).

Now, the basis of tangent vectors to T\J (T, Q)) corresponds
to the coordinates (g,4,¢ ), and may be labeled

3,,d,,9,

q’ %9
The tangent vector to the curve d 'q is then

dq d%
(7)"% + (—d,z )‘9@ +9.

We see that the fiber of 7 goes over to the affine subspace

(%)Q, + d, + (multiples of 3,)

of Q). When the coordinates (g) are changed, the second
derivatives, modulo the first derivatives, change in a /inear
homogeneous way, which is the tipoff to the “vector bundle
structure.”

Finally, here is a more direct way to define this vector
bundle structure. Let (z,g)beanelementof T X .# (7, Q). As-
sign to (t,q) the linear map ¥ (Q) —R labeled & *(z,q) as fol-
lows:

8%(t,q)(f) = d *(dr*( f(a(2)).
The space of linear maps in ¥ (Q) is a linear space. If
(¢,9), (t',q') have the same second order of contact, then

8%(tq)=58"(t".q').
Hence, 8 passes to the quotient to define a map
JAT, Q) — L(F(Q), R).
[L(F(Q), R) = vector space of known maps .% (@) — R.]
Theorem 6.2: The fibers of the forgetting map J 2 — J!
go over under this map to a subspace of L(F (Q), R).

Proof: Let us use coordinates (g). If {z,q), with q:t— g(t),
then & %(z,q) is the map

S+ 1 4
Q.E.D.

To obtain the vector space structure for the fiber of the
forgetting map J>— J ', one has only to assign to each point
of the fiber the quotient linear vector space corresponding to
the affine subspace.

Remark: Here is the general setting. We assigned to
each fiber J %(7, Q) an affine subspace

Vo+ S
of a vector space V. For two points in the same fiber, the
point v, is the same. Thus, we can map the fiber into the
quotient V' /S, obtaining the vector bundle structure directly.

Theorem 6.3: Suppose Q is a real vector space. Then the

addition of maps q:7— @ passes to quotient to define vector
bundle structures on the fibers of the forgetting map

JIT,Q)—JT, Q) =T xQ,
JHT, Q) —J (T, Q).
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J YT, Q) is naturally identified (via the map)

d .
(ba) — (na) 2L (1)) = (e
with
TxXQxQ.
Similarly, J%(T, Q) is identified via the map

(t,9) — (.9,9,9)
with 7 X Q X @ X Q. The vector bundle structures are
J T, Q)and J*T, Q) and are given as follows:

(t,q,Q} + (t’q’q’) = (trq’q» + ('1’),
(t’q’qré) + (t’q’qvé) = (Lq,q’é’ql)-

Note that these are the natural ways velocities and accelera-
tions add.

7. THE NEWTON-LAGRANGE EQUATIONS IN THE
LANGUAGE OF DIFFERENT!AL FORMS

In the traditional “analytical mechanics,” Lagrange’s
equations are the basic tool. (Recall that Lagrange’s book
was called Mécanique Analytique.) There are two ap-
proaches—directly, via Newton’s equations, and indirectly,
via the calculus of variations or ‘““‘Hamilton’s principle.” In
this section I will briefly review the former approach and
then show how Lagrange’s equations can be formulated us-
ing differential forms.

Let us start with Newton’s equations (for particles) in
the usual form:

2

m, % = — aril Vil 1) 4+ Fill ooy Froeesf)
: : (7.1)
d’ry 3

dr? Iy +Fn-
Herer,,...,r, are the position coordinates of NV particles in
R3.V,,...,Vy are the potential functions determining the “in-
ternal forces.” F,,...,F, (functions of the positions ry,...,ry
and the velocities r,...,r ) are the external forces.

Following the classical ideas, define variables g and ¢
called configuration and velocity variables.

my

g =1(g1,--43n),
q, div—2
I =1G]|sofy=9n-1],
g3 UEYY
g4 =1{q19sn),
q, 4w >
=g )y =G~
g3 9
Set
T=}mt,)? 4+ myly), (7.2)
L=T-V. (7.3)

L, the Lagrangian, then becomes a function of {(g,g).
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oL

——=mr,

o,

a _ _ ¥

dr, ar,’

d dL dL . av
____.—_,..._zmlrl+ -
dt gr, Or, ar,

=, using Newton’s equations (7.1), F,.
Introduce indices
1<a,b,..<3N

and the summation convention for these indices. Then (using
the traditional® arguments) Eqgs. (7.1) take the form

d L JL .
— Fa i) 7.4
o g (9.9) (7.4)

The F, are just the external forces rewritten so that Eq. (7.4)
is equivalent to Eq. (7.1). [For example, F,(q,4) is the first
component of the “vector” F,(r,r).]

Notice the way the indices a occur in Eq. (7.4), i.e.,
downstairs. This indicates that the forces are—in the La-
grangian framework—differential forms.

Let us now forget where Lagrange's equations (7.4)
came from, and study them using techniques of the theory of
differential forms. Let X be the space of variables

(g ¢" t).
Let us assume that (¢“) are the coordinates of a manifold Q.

We say that (¢ ¢° t) are the natural coordinates (that we
defined and called “Newtonian” in Sec. 6) for

JNT, Q)

Thus, we will identify X with J (T, Q). Consider the follow-
ing one-forms in X:

6° =dq° — ¢°dt. {71.5)
They are called (for geometric reasons) the contact forms. Set
@=Ldt+A4,6° (7.6)

The A, are functions on X which we shall determinein a
moment. Let us calculate db:

d0=dLAdt +dA, N6° + 4,d6°. (1.7)
Now,

dL =% age + 95 gy + 9L 4y,

" 3 or
df“=d(dg°) — d¢“ \dt
=0—dg¢*Ndt.

Hence

6 = (‘9—" dgo+ 9L dqa) Adt

dq° aq°

+dA, NdO* — A,dg° \dt.
If we now set
_ oL
a aqa 3
notice that the terms in d@ involving dg cancel, and we are
left with

A (7.8)
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do = gﬁa dg° Ndt + dA, NO*. (7.9)

q
Use (7.5) to express dg“ in terms of 8, and substitute into
(7.9), using also that dt Adt = 0:
40 =9L 0andt +di, AO*
dgq°

=(d(‘”‘) —ilidz>/\0”.
a¢° aq°

Set
0. —d ((9L) _ oL
dg*/  dq°
Then, we have what one might call the basic formula of ana-
lytical mechanics:

do=6,M6". (7.11)

Let us recapitulate what has been done. We have taken
the Lagrangian function L and constructed the one-form 6
on X. (@ is called the Cartan form, since it first appeared in
Cartan’s book, Lecons sur les Invariants Intégraux.) The
contact forms 6 © are purely “kinematical.” However, the 6,
involve the Lagrangian L and are ‘“dynamical.”” Now, set

n,=6,—F,d, (7.12)

where the F, are the component functions of the force, as
they appear in Lagrange’s equations (7.4). Also,

2, = d(-‘?i) — (—Oz‘- + F,,) dt.
aq° dq°

dt. {7.10)

(7.13)
Let

t— (gte) i) =22, )

beacurvein X thatrepresents a solution of Lagrange’s equa-
tions. Let T be the one-dimensional manifold whose coordi-
nate is ¢. This determines a map

@:T—X .

Theorem 7.1: The curve satisfies the Lagrange equa-
tions if and only if

$°(2,)=0=¢"(6°). (7.14)

Now, we give general definitions using general bases for

the . (Q ) module of one-forms on @, i.e., using what Cartan
called “moving frames.”

8. THE NEWTON-LAGRANGE EQUATIONS IN TERMS
OF GENERAL MOVING FRAMES
(“QUASICOORDINATES”)

Continue with the notation of Sec. 7. Let w',...,0" be a
basis for one-forms on Q. Let T be the interval 0<¢ < 0.
Consider r as a function, o as one-formson T X Q. Lift up »
and ¢t toJ (T, Q) via the “forgetting” map

JUT, Q) =TT, Q) =T XQ.

[We use the same notation for a form and its lift up to
J T, @).] Define real-valued functions

v JNT, Q) —R

a
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as follows:
Given a map

q:T—»R
forteT,let

d
T(: € Q)

be the tangent vector to q at ¢. Then,

vit,q) = w“(—d;:l) . (8.1)

The functions
vT X 4 (T, Q)

defined by (14.1) pass to quotient to “live” on J (T, Q).
Theorem 8.1: The one-forms »?, dt, dv®onJ (T, Q)(de-

fined as explained above) form a basis for one-forms on

J YT, Q). The forms

0° =0 —vdt (8.2)
are the contact forms, with the property that
j'@e)=o0 (8.3)

for each qe .#(T, Q). Let € be the Pfaffian system of one-
forms on J (T, Q) spanned by the 8. It is called the contact
system and is invariant when the basis (w®) is changed.

The proof follows in a straightforward manner from the
definitions.

Now, let

L:J\T,Q)—R
be a Lagrangian.

Theorem 8.2: There is a unique one-form & (L ) on
J (T, Q) which satisfies the following conditions:

O(L)—Ldte?, (8.4)

do(L)e Z\JNT,Q)A¥C . (8.5)

Remark: Equation (8.5)means that d6 (L ) belongs tothe
Grassmann algebra ideal (not the exterior differential sys-
tem, i.e., the differential ideal) generated by the contact
forms.

Proof of Theorem 8.2: In terms of the basis

(@° dt, dvF)
for one-formsonJ (7, Q) described above, dL can be written
in the following form:

dL=Ldt+L,0°+ L, 4, (8.6)

where the (L,, L, L, ), 1<a,b,<n, are functions on

J (T, Q). Let us first suppose that 8 {L ) exists, satisfying Eqgs.
(8.4) and (8.5), and prove that it is unique. In terms of the
moving frame, 6 (L ) can be written in the following form:

O(L)=Ldt+f,(" —v°dt) (8.7)
= (L — f,v°) dt + f, 0%, (8.8)
where ( f,) are functions on J (T, Q). Then
do(L)=L,0°Adt + L, ,dv, Ndt + df, N6*
+ f,(do® — dv® Adt)
=(L,,, —f,)dv"Ndt + L,0°Ndt +df°NO°
+f,do. (8.9)
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The hypothesis, condition (8.5), means that there are one-
forms 7, such that

do(L)=mn, 6" (8.10)

Now, the (64, dv°, dt ) form an F\J (T, Q ))-basis for
DT T, @)). The right-hand side of Eq. (8.10) contains no
term in dv® A dt. Thus, equality of Egs. (8.9) and (8.10) re-
quires that

L =

n+a a?’

(8.11)
ie.,
6L)=Ldt+L,, ,0°

This proves uniqueness.

The converse, i.e., that using Eq. (8.12) as the definition
oftheform @ (L )satisfies Eq. (8.10), is a direct calculation, left
to the reader.

We can now write the Lagrange—Newton equation in a
convenient and natural way in terms of the geometry of the
one-jet spaces. Let F be a one-form in ¥ . Set

2(L,F)=d6(L)+ FAdt. (8.13)

The characteristic vectors of the two-form 2 (L ) are the ele-
ments of T\J (T, Q)) such that

v (L, F)=0. (8.14)

A curveinJ (T, Q)issaid tobeacharacteristic curveif 2 (L ),
its tangent vector at each point, is a characteristic vector.

Remark:df2 (L }isnot necessarily zero, hence a v satisfy-
ing Eq. (14.13) is not necessarily “Cauchy characteristic” in
the sense of Cartan.? If there is a possibility of confusion,
perhaps a term like “algebraically characteristic” could be
used.

Theorem 8.3: A curve q:t— g(¢) in Q is a solution of the
Newton-Lagrange equations (13.4) in the classical sense if
and only if the curve

t— d'q(t)

(8.12)

isacharacteristiccurve of {2 (L, F}in thesense defined above.
Proof: To obtain the classical formula, specialize the
one-forms o° to the differentials dg° of a coordinate system

(g°) for Q.

9. MECHANICAL SYSTEMS WITH CONSTRAINTS

Continue with the notation of Sec. 9. We have seen that
a mechanical system is determined by a “configuration”
manifold Q, a time-parameter manifold 7, and

a function L on J (T, Q),

a one-form F on J '(T, Q), which lies in the Pfaffian
system determined by the contact form.

We now introduce a set of constraints as a Pfaffian sys-
tem Z onJ (T, Q). We will define sets of curves in Q by
imposing conditions on the tangent sectors to their prolon-
gations. The following special notation will be useful here:

If q:z— g(t ) is a curve in Q, then a(q) denotes the tan-
gent vector curve to the prolongation 3 'q. Thus, a(q) is
a curve on the tangent bundle toJ (T, @ ), which anni-
hilates the one-forms on %, the contact Pfaffian sys-

tem. (9.1)
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Remark: The curve a(q) can be identified with the two-
prolongation 8°q:T— J *(7, @ } under the identifications de-
veloped in Sec. 8. Physically, it is, of course, the acceleration.

Definition: A curve q:T— Q is a trajectory of the me-
chanical system-with-constants (L, F, &} if its prolonged
curve d 'q satisfies the following conditions:

alq)(r)d2(L, F)e 2, (9.2)

Z(alq)it)) = 0. 9.3)

Remark: Geometrically, relations (9.2)-(9.3) mean that
ad 'qis a solution curve of the constraint Pfaffian system &
(which are a set of second order differential equations for g)
and that r—a(qg(¢ )} are characteristic vectors of the two-form
02 (L, F)restricted to the tangent vectors of J (T, @), which
are annihilated by &7, _

The constraint system & encountered in the classical

treatises™'' seem to be of first-order type, namely, there is a
Pfaffian system Z' on T X Q = J°T, @) such that

& is generated by the pull-back 7*(Z’'), where
m J (T, ) — JT, Q)isthenatural “forgetting” map
on the jet spaces. (9.4)

Since it is really no extra mathematical work, we will carry
along the more general type. It is not clear whether they do
occur in physical situations.

Definition: The constraints are said to be Aolonomic if
the Pfaffian system & is completely integrable in the Fro-
benius sense.

10. MECHANICAL SYSTEMS WHICH HAVE THE SAME
TRAJECTORIES

Given the manifolds Q and 7T, what we have done is to
assign a set of curves satisfying a system of second-order
ordinary differential equations [{10.2j-{10.3} in coordinate
free terms] to the triple (L, F, 27). We ask

When do two such systems (L, F, Z), (L', F', #') de-
termine the same set of trajectories? (10.1)

In other words, we want to describe the fiber of the mapping
{Mechanical systems) — {Trajectories).

Of course, this question can be examined at the simplest
classical “‘calculation of variations” level, i.e., when the
forces F and the constraints & are zero. There it comes
down to the following, more classical, question:

Given two Lagrangians L and L ', when do they deter-

mine the same differential equations? (10.2)
Since the Lagrange equations
d
— L) =L, =0 (10.3)

are linear in L, this is the same as asking the following ques-
tion:
When is the Lagrangian (L — L ') = L " “exact,” i.e.,
Lagrange equations (10.3) are identities for
L"=L_-L"

Theorem 10.1%; Lagrangians L and L ' determine the
same set of curves in @ if and only if
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deL)y—ée(L")=0. (10.4)

Relation (1.4) indicates that the Inverse Problem (deter-
mining which families of curves in Q are extremals of calcu-
lus of variations problems) should involve topology, since the
existence of forms satisfying conditions on the exterior deri-
vative is intrinsically topological. Related developments
have been provided (without using differential forms) by Ta-
kens®® and Anderson and Duchamp.?®

Let us now consider this question in a broader geomet-
ric context. Let X be a manifold with

e PX)

a two-form on X. [X might be J \(T, Q), where Qs the confi-

guration space of a mechanical system.] Suppose also that 7

and % are arbitrary Pfaffian systems on X.

Let
TULE, P)={VeZ XV 1€ P, EWV)
=ZV)=0}. (10.5)

The trajectories of the system ({2, &) are then the orbit curves

of the vector fields in 77((2, ¥, Z).

Given & and % we are interested in determining the
fibers of the mapping
R—7(2, 7).

The most immediate question of this type is:
Whenis 772, ¥, ?)equal to 7(Z)n 77(€), i.e.,
when does the relation € (V) =0= Z{V}for
Ve 2 (X)imply VA 2e #? (10.7)

Of course, the simplest condition of this sort would be the

following one:

(10.6)

12 belongs to the Grassmann algebra ideal generated
by Z. (10.8)
Another related question is the following one:

Given a mechanical system (£2, €, 77), when does
there exist another form (2’ which lies in the same fiber
as £2 in the mapping (10.6) (i.e., determines the same
trajectories), but also satisfies the following condition:

dn’ =o0. (10.9)

In turn, this question is related to the “symplectic” nature of
the mechanical system.

We will now investigate this point for mechanical sys-
tems associated most directly with traditional analytical me-
chanics.

11. CAUCHY CHARACTERISTICS OF A LAGRANGIAN
SYSTEM WITH EXTERNAL FORCES

Let Q be an n-dimensional manifold, and let
X=JT,Q)
and
L: X—R
be a Lagrangian function for Q. Let
O{L)e D'(X)
be the Cartan form associated with L. Let ¥ C & '(X ) be the

Robert Hermann 2084



Pfaffian system on X generated by the contact forms.
Let

Fe<¥
be a force form, and let
2=dO(L)+ FAdt (11.1)

The vector fields ¥ on X which satisfy the following condi-
tions:

vie)=1, (11.2)
V10 =0, (11.3)
EWV)=0, (11.4)

are called the Newton-Lagrange vector fields. The orbits of
V are then prolongations of the solution of the classical New-
ton-Lagrange equations.

Let

£(102) (11.5)

be the differential ideal in the Grassmann algebra of X gener-
ated by £2. For each x € X, let € (& (12 ))(x) be the Cauchy
characteristic vector of this ideal. In this case,

CER)x)={veX vl 2=0=v d2}. (11.6)

Definition: The system is said to be nonsingular if the
following condition is satisfied:

dim(% (£ (42 )(x))

is constant as x ranges over X.

By the fundamental “Cauchy characteristic” theorem'®
of Cartan, the Pfaffian system % (% (12 )) is completely inte-
grable. We will say that the Cauchy characteristics [and the
mechanical system (L, F)] is regularif the foliation € (% (2 ))
is regular in the sense that there is a fiber space mapping

a: X—Z (11.8)

of X onto a manifold Z, whose fibers are the Cauchy charac-
teristic submanifolds of & (£2 ). Another way of putting this is
to say that the space of leaves of the Cauchy characteristic
foliation admits a manifold structure.

By Cartan’s theorem, ' there is atwo-form £2 ' on Z such

(11.7)

that
a'(2)=10. (11.9)

Thus, the system, in a sense, ““lives” on the quotient space Z.

12. INFINITESIMAL SYMMETRIES OF LAGRANGIAN
SYSTEMS WITH EXTERNAL FORCES

Continue with the notation of Section 11. Let
X=JT,Q),L,F 02 802)%(%)),
Z=FE2)N\X (12.1)

be as defined there. Continue to assume that Z is a manifold,

i.e., the Cauchy characteristic foliation is regular.
Definition: A vector field ¥ on X is said to be an infinite-

simal symmetry of the mechanical system (L, F) if
ZLy(2)=0. (12.2)

Theorem 12.1: If V satisfies (12.2), then it also satisfies
the following conditions:
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Ly(ER)CE(2), (12.3)
ZLy(C(ER))CE(Z(2)). (12.4)

In words, V generates an infinitesimal symmetry of the exte-
rior differential system generated by {2 and the Cauchy char-
acteristic foliation.

Proof: This is a general property of exterior differential
systems, and follows readily from the standard identities
linking the operation of the Lie derivative, contraction, and
exterior derivative.

A particularly important symmetry for mechanical sys-
tems is, of course, time-translation. This corresponds to a
vector field on X = J (7, Q) that we will call

d,. (12.5)

Thus, if (©°) is a basis for differential forms on @ (also
known as “quasicoordinates” or “moving frame”), and

o, dv, dt (12.6)
is the associated basis for X, then

w’d,)=0

= dv{d,), (12.7)

(dt)d,)=1. (12.8)
Set

L,=4d,L), (12.9)

F, = ga,(F)- (12.10)

(L,, F,)are the Lagrangian and force law of another mechan-
ical system, hence their Cartan form can be constructed. Call
it

Theorem 12.2:

L, 2)=0". (12.11)

Proof: Again, this is a slight extension of the material in
Chap. 4 of Ref. 7. The proof is left to the reader.

Definition: The system (L, F)is said to be time-invariant
if

L,=F, =0. (12.12)

Theorem 12.3: Suppose the system (L, F') is time-invar-
iant. Then, the vector field d, is a symmetry of the system, in
the sense defined above. Further, d, passes to the quotient to
define a vector field d; on the quotient manifold Z, i.e.,

a.0,) =4 (12.13)

Proof: Again, this follows from general principles. In
the simplest case

F=0. (12.14)
Theorem 12.3 is the essence of the symplectic structure ap-
proach'? to Hamiltonian mechanics. In this case,

df2=d(6(L))=0,

hence, £2'is a two-form Z. It defines a symplectic structure on
Z, in the sense of Refs. 1 and 2, and a Poisson bracket (Lie

algebra) structure on # (Z ). The vector field 3; on Z then

satisfies

£ @2)=0. (12.15)
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Then,

dd,dn)=0. (12.16)
d:.112", asaclosed one-form on Z determines an element of
HYZ,R),

the (de Rham) one-cohomology of Z with real coefficients. If
this element is zero, there is a function

h:Z >R
such that

dh=9,40"
h is then a Hamiltonian function for the system. The orbits of
d ! are the solutions of Hamilton’s equations for this Hamil-
tonian. In favorable cases {e.g., maximal rank conditions for
certain Hessian matrices) Z and its asSociated symplectic
structure can be mapped onto the “canonical” symplectic
structure on 7%(Q), the cotangent bundle to Q thus linking
up the Lagrangian approach of this paper with the Hamil-
tonian or symplectic approach, which is more popular in the
contemporary literature. However, it should be remarked
that the former approach is more general, and better adapted
to a program of modernization of the approach in the classi-
cal treatises.”"!

13. SOME NEWTON-LAGRANGE MECHANICAL
SYSTEMS WITH FORCES WHICH ADMIT SYMPLECTIC
STRUCTURES

After this review of the relation between the Lagran-
gian and symplectic approaches to the traditional force-free
analytical mechanics problems, let us move on to seek gener-
alization to the case where there are force forms F. Then, the
two-form

2=d6(L)+ FAdt (13.1)

is not a priori closed. There are then two questions to study:
What are the conditions on F that the form (2 satisfy

an =07 (13.2)

How can one modify {2 to obtain a closed two-form 2’
whose characteristic curves determine the solution of
the Newton-Lagrange equations? (13.3)

I will treat both of these problems in this section.

Theorem 13.1: Let 2 be a two-form on J (7, @) of the
form (13.1) with F a one-form which lies in the Grassmann
algebra generated by the contact forms % . Then, {2 satisfies

d2=0 (13.4)

if and only if F arises from a time-dependent, exterior-closed
one-form on Q in the natural way.

Proof: Since this is a purely local matter, choose coordi-
nates (g°) for Q, and the corresponding coordinates

(g% ¢% 1)
for J YT, Q).

Then, our assumption that F'is a “force-form” means that it
can be written in the following form:

F=F,(dg" — di" dt), (13.5)
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where the F, are functions on

JNT, Q)
Then,

FAdt=F, Ndqg° \d:. (13.6)
Since

d(dé (L)) =0, (13.7)
the condition {13.6) requires that

d(F, Ndg°N\dt)=0, (13.8)
which implies that
alF,) , .
— Adg* Ndg° Ndt =0,

3’

and hence

oF, =0. (13.9)

q°
Then, we can assign to F the closed one-form

F'=F,dq° (13.10)
in Q X T. Again, it follows from (13.6) that

dF'=0. {13.11)
It is readily seen that the assignment

F>F' (13.12)

is “intrinsic,” i.e., is independent of the coordinates.
Conversely, the steps are reversible, i.e., a form F' satis-
fying (13.11) leads to an F and an (2.
Condition (13.11) suggests the introduction of a “poten-
tial,” i.e., locally a function ¥ on Q X T such that

dV Adt=dF\dt. (13.13)

Of course, de Rham’s relation between differential form co-
homology and the topology of manifolds leads to interesting
(and reasonably well known and explored) relations between
“local” and “‘global” potentials.

Now, suppose that condition (13.6) is not satisfied. Let
us modify £ in the following way:

0' =0 +£,,(dg" — ¢°dt ) \dg® — ¢°dr), (13.14)

where ( f,, ) is a skew-symmetric matrix of functions. Notice
that 2 and £2 ' determine the same trajectories, so the tangent
vectors v such that

v12=0,
(13.15)
vJ€ =0
and
vJ2'=0, (13.16)
v 1€ =0

are the same.
Theorem 13.2: d(2’ = Qif and only if the following con-
ditions are satisfied:

d(f,,dg" Ndg®) Ndt =0, (13.17)

9_(F,) =2, (13.18)
aq°

Robert Hermann 2086



J 1(39 : 3 i
g =— | (F, — 2fu§) — —(F, — 2" ):
% (fas) ) (aq”( fe4°) aq"( . q))

(13.19)

Proof: Follows from applying exterior derivative d to
both sides of (13.15), and the relation

df) =dFA\dt.

We can now analyze further relations (13.17)-(13.19).
They imply that the force terms are of the following type:

F, =2.¢" + 1. (13.20)

where the a’s and b s are functions of ¢ and ¢ alone.

Theorem 13.3: With the force law F of form (13.20), the
following conditions are necessary and sufficient that the
two-differential form (2 ' be closed:

7
2 (& wdg” Ndg®)

d(f,dq") = P

=i(fa,,)dq"/\dq”. (13.21)
ot

Proof: Substitute the ansatz (13.20) into the other condi-
tions.

An important case physically is that where the force
law is time-independent. In this case, the conditions found
above simplify and can be written in an elegant global form.

Theorem 13.4: Suppose that we define a mechanical sys-
tem by means of a Lagrangian function L and a force law F,
with d,(F) = 0. Suppose that this force law satisfies condi-
tion (13.20). Define differential forms a and 3 on Q so that

a = f,,dg" Adg", (13.22)

B =f,dq". (13.23)
Then, the condition that the two-differential form £2 ' be
closed is that the following conditions be satisfied:

da =0,

dp =0.
Ifdf2 ' = 0, then the trajectories of the mechanical system are
Cauchy characteristic curves of £2'. Assuming that the tra-
jectories define a regular foliation of J '(R, Q), the quotient
space of the foliation has a symplectic structure.*®

The condition for the existence of a symplectic struc-
ture on the space of trajectories is especially important in
electromagnetic theory. For example, suppose that ¢ are the
coordinates of a charged particlein R *. It is well known that
the force law then has the form described in condition
(13.20), where the f,, are the components of the “magnetic”
field, the £, the “electric” field. The conditions
0 = da, 0 = df are then part of Maxwell’s equations. It is
well known that to write the charged particle equations in
Hamiltonian form requires that these differential forms be
exact; the forms whose exterior derivatives give them are the
potentials. Thus, we see that the charged particle equations
themselves may be given a symplectic structure in a global
way without the intervention of the potentials. Such a possi-
bility is very relevant to quantization.
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14.NEWTON'’S EQUATIONS OF MECHANICS DIRECTLY
IN TERMS OF THE VECTOR BUNDLE STRUCTURE OF
THE TWO-JET SPACE

I now briefly sketch a direct method of expressing the
relation

(14.1)

without the intervention of concepts from the calculus of
variations. Let us begin with the case where the configura-
tion manifold Q is a finite dimensional real vector space.
(Since we use coordinate free methods, some of the ideas can
be extended to the infinite dimensional case, using the appro-
priate functional analysis generalities.) Let Q ¢ denote the
dual vector space. Denote the duality function

Q 4% O0—R
by
(¢, ) —(q" q) -
Let 7 continue as a time interval manifold, say

mass X acceleration = force

0<t< .

Definition: A mass law is a linear map

m:Q—Q° (14.2)
which is symmetric in the sense that

(mlg), ¢y = (m(q’), @)

forq,q' € Q. (14.3)
A force law is a map

O XQ@ XR—Q“ (14.4)

A mechanical system (in Newton’s sense) is a pair
(m, f)

of a mass law m and force law f. A curve t— ¢(t ) is a trajec-
tory of the mechanical system if it is a map

q:7— Q,
t—g(t)
such that
at)=/(a0. 5 0)
= t), =, 14.5
m(2L)=f(qt0) & (14.5)
One can derive the energy relation
1 dq) dq> .
KE({q) = — —),—) = .
(q) 5 <m( ” ” kinetic energy
% (KE(q)) = [using (20.4) and (20.5)],
dg ) dg
) t 'y T 14.6
s (q dr dt (14.6)
b
dg dg
ilab)) = f < ( ,—,t),—>dt
Wig; (a,b)) ] fle ” ”

is the work in the time interval a<¢<b.

Now, we can free this material from the constraint that
Qbe a vector space by using the Ehresmann jet-space formal-
ism. Identify
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OXQXT

with J (T, Q), the space of one-jets of maps T— Q. Let x
denotea pointof J (T, Q )identified (when Qis a vector space)
with a triple:

% 4, 9),

teT,qeQ,g€Q.
Let

mJ' T, Q)—Q

be the projection map:

(14.7)

7ix) = 7(t, 4, §)
=q. (14.8)
Let E be the vector bundle over J (7, Q ), which results
from lifting the tangent bundle T(Q) to X via the projection
map (14.7). Explicitly, a point of E is an ordered pair

(x, ) (14.9)
where

xeJ YT, Q)
and

ve @, .-
Let E “ be the dual vector bundle to E, i.e., a point of Eis a
pair (x, & ).

xeJUT,Q), 6€Q4,.

The force law fshould then be interpreted as a cross-
section map

f:J\T, Q) —E. (14.10)

The mass law is a linear bundle map
mE-E“
Thus, the right-hand side of Eq. {14.5) is

f(@'a(r)),
which is an element of the fiber of E ¢ above the point
d'q(t)

of JYT, Q).

In order to have Newton’s equation (14.5) make sense
ona general manifold Q (i.e., to putitintoa fully “covariant”
form) it is necessary to make sense of the left-hand side of Eq.
(14.5). This is where the construction of Sec. 6 enters: We
have shown that the vector bundle E can be identified with
the two-jet space:

(14.11)

(14.12)

JYT, Q)=E. (14.13)
The ““acceleration” vector
d?q
t
2 ()

should be identified [via Eq. (14.13)] with an element of E.
We can write Eq. (14.5) as

m(d%q(t)) = AFq(t)). (14.14)

We can now translate Lagrange’s equations into this
framework. Write them in the following form:
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d ((9L> aL .

- - = J.\49 49, t )

o)~ ag° fula, 4, 1)

q"=‘z] (1<a, b<n = dim Q). (14.15)

Do the derivation on the left-hand side of (14.15):
d*L :dzq" &L d_q”+ L —§£—f

9g°9q®  dt*  3g°9¢" dt 9y gt T

(14.16)

We can derive from Eq. (14.16) the definition of a mass and
force law which leads to Eq. (14.14):

&L b) P
x)(v) = X’ | —, 14.17
sl = ( pe U (14.17)
oL  FL &2L)
x) = ( f, +2= + dg°  (14.18
fi =1 o O Ge) W 1419

for

x=(g,:4t)eJ (T, Q) (x, v) € E.

Ve Q s

15. MECHANICAL SYSTEMS AS PFAFFIAN SYSTEMS

We can now formulate what a “‘general mechanical sys-
tem” might mean from the point of view of the theory of
Pfaffian systems. For simplicity, we deal only with systems
without constraints.

Let X be a manifold of dimension (2n + 1). Choose in-
dices and the summation convention as follows: 1<a, b<n.
Suppose the following data is given on X:

(a) a real-valued function 7 € 5 (X)),
(b) a completely integrable Pfaffian system .# C % '(X)
whose leaves are dimension (» 4 1), such that

v(t)#0
for each nonzero tangent vector to X such that
Fwy=0

(In particular, dt #0 at each point of X.),
(c) a Pfaffian system ¢, determined by a cross-section map

(15.1)

(15.2)

x— G"TYT{X)), (15.3)
(d) as an .¥ (X ) module, ¥ is contained in the submodule
spanned by .# and dt,

(e) a two-form 2 on X which lies in the Grassmann algebra
ideal generated by . Symbolically,

NeT'XINE. (15.4)
The curves
x:7—X(7)

in X which satisfy the conditions
A xim) 20, (15.5)
dr
¢ (—t{i) =0, (15.6)

dr

ax g, (15.7)
dr

are called the trajectories of the system. (dx/d7 denotes the
tangent vector curve to x.)
Condition (15.5) means that these trajectories can be
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reparametrized (locally) by the function 4, i.e., so that
tx(r)) = 7. (15.8)

We shall deal with these trajectory curves in this form.

Let us make these assumptions explicit in terms of mov-
ing frames, i.e., local bases of the % (X') modules involved.
Suppose then that

(@) is an F (X ) basis of .7
Let (w}) be forms (which exist locally by complete integrabi-
lity of .#) such that

do® = 0% Ned®. (15.9)
Condition (d) implies that there is (locally) a basis 6 “ of € of
the form

0°=w® — v dt, (15.10)
where v* € # (X ). Condition (15.4) implies that 2 can be
written in the following form:

N=n,N0° (15.11)

where (7,) are a set of one-forms. The trajectory curves
7—x(7) then satisfy the following Pfaffian equations:

dx)
XV _o
7I“(a'f

-9 (EZ‘_) _
dr

Let & be the Pfaffian system generated by 7, and 8°. Equa-
tion (15.12) then says that 7—wx(7) is an integral curve of 7.

We can describe the trajectories in terms of second or-
der, quasilinear differential equations in the following way.

Let (¢°) be a set of functions on X {or possibly an open
subset of X' ) such that the (dg”) generate the module .#". [In
other words, the (¢°) are local coordinates of the leaf space
J\ X] Then,

(15.12)

w® = A%dg", (15.13)
0°=w’—1dt

=4 5dqg® — v* dt. (15.14)
Suppose that the 7, are of the following form:
Mg =B,60°+ Cdt® + C,st. (15.15)

The integral curves 0:7—X of the Pfaffian system & [which
satisfy Eq. (15.12)] then satisfy the following differential
equations:

dv®
— = 16
Coslo(2)) ” +C, =0, (15.16)
v"(t)=A2(a(t))51£, (15.17)
dt
g°(t) = ¢%(otz ). (15.18)

Notice that this is a second order ordinary differential
equation for the 7~ ¢(# ), which is linear in the second deriva-
tives.

16. FINAL REMARKS

In this paper I have described how mechanical systems
of a finite number of degrees of freedom, but of a general type
in terms of external forces, constraints, etc., could be de-
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scribed in terms of the differential geometric theories of Car-
tan and Ehresmann. The ground has been prepared for the
application of the theory of equivalence of geometric struc-
tures, the application of the theory of pseudogroups, the
study of global properties, and so on. In this way, I believe
that we are now in a position to more fully realize possibili-
ties of applying differential geometry to mechanics and elec-
tromagnetic theory that were suggested many years ago by
Gabriel Kron® and the RAAG Memoirists.® The introduc-
tion of control-theoretic concepts'>~'5 also provides a fertile
field of potential application of the formalism.
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The equivalence of two approaches to the Feynman integral
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Two apparently quite different Banach algebras of functions have been introduced and studied
recently in connection with the theory of the “Feynman integral.” The functions in both spaces
have been shown to be ‘“Feynman integrable,” but two different definitions of the “Feynman
integral” were used. We show here that the two spaces are in fact isometrically isomorphic as
Banach algebras where the correspondence is given by what is essentially an extension (or
restriction) map. Further, the “Feynman integrals,” in the two different senses, of corresponding
functions are equal. The equivalence between these two theories is surprisingly easy to prove but
has a number of consequences for both theories. In the last section of the paper we give a few
simple but useful consequences and make some remarks about our experience so far in using the

equivalence.

PACS numbers: 02.50.8k, 03.65.Db

I. INTRODUCTION

We begin by giving information necessary for our dis-
cussion of the Banach algebra S. The space S was introduced
and studied by Cameron and Storvick in Ref. 1 and was
studied further in Refs. 2-6.

Fix ¢ > 0. For notational simplicity, we will confine our
attention throughout to the interval [0,¢ ] and, with one ex-
ception, to a single space dimension. Actually the arguments
work just as well for a general interval [¢,b ] and for an arbi-
trary number of space dimensions.

C [0,¢] will denote the set of R-valued, (i.e., real valued)
continuous functions on [0,z ]. C,[0,z] will denote Wiener
space, that is, the set of functions x in C[0,2] such that
x(0) = 0; m will denote Wiener measure on C,;[0,2].

A subset A of Cy[0,2] is said to be scale-invariant mea-
surable provided p4 is Wiener measurable for every p > 0. It
is easy to see that the class 7 of scale-invariant measurable
sets forms a o-algebra. N in % is said to be scale-invariant
null provided m{pN') = O for every p > 0. A property which
holds except on a scale-invariant null set is said to hold scale-
invariant almost everywhere (s-a.e). For a rather detailed dis-
cussion of scale-invariant measurability and its relation with
other topics see Ref. 7.

Let Fbe a C-valued (i.e. complex-valued) function on
C,[0,¢] which is s-a.e. defined and scale-invariant measura-
ble and such that the Wiener integral

JA)= L . ]F(/l ~12x)dm (x)

exists as a finite number for all A > 0. If there exists a function
J *(A) analytic in C *: = {4 in C:Re A >0} such that
J*¥A)=J (A )foralld >0, thenJ *(1 )isdefined tobe the ana-
lytic Wiener integral of Fover C,[0,¢ ] with parameter 4, and,
for Ain C *, we write

fm Y Fdmix): = 7*4)

Cl0.]

Let g be a real parameter (g #0) and let F be a function whose
analytic Wiener integral exists for A in C *. If the following
limit exists, we call it the analytic Feynman integral of F over
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C,[0,t] with parameter ¢, and we write

an f, an Wy

f F(x)dm(x): = lim F(x)dm(x)
Col0,r] A— —ig JC,[0,1]

where A approaches — ig through C *.

Remark: Equality s-a.e. is an equivalence relation for
functions on Cy[0,z]. It is the appropriate equivalence rela-
tion for this setting as was discussed briefly in Ref. 4.

The definition of the Banach algebra S involves the Pa-
ley-Wiener-Zygmund (P.W.Z.) integral,® a relatively simple
type of stochastic integral which we now define.

Let {¢;] be a complete orthonormal set of R-valued
functions of bounded variation on [0, ]. Forvin L,: = L,[0,¢]
and n a positive integer, let

n

onisi= 3 ([ nar)e . (L1)

j=1

The P.W.Z. integral §/ v(s)dx(s) is defined by

f' v(s)dx(s): = lim fun (s)dx(s)
0 n—o Jo

for all x in C,[0,¢] for which the limit exists. See Doob’s
book® for an alternate method of defining this stochastic in-
tegral. Some of the key properties of the P.W.Z. integral are
conveniently summarized in Ref. 5 with some additional in-
formation given in Ref. 4. We will limit ourselves here to a
brief mention of a few facts: (i) For each v in L,[0,t] the
P.W.Z. integral exists for s-a.e. x in C,[0,¢ ]. (ii) §% v(s)dx(s) is a
Borel function of (v,x) on L,[0,2]X Co[0,]. (iii) If v is of
bounded variation on [0, ], the P.W.Z. integral f% v(s)dx(s) is
s-a.e. equal to the Riemann-Stieltjes integral f;v(s)dx(s). (iv)
The P.W.Z. integral has the expected linearity properties
when they are interpreted properly. [See Ref. 5 for a more
detailed statement of (iv).]

It is natural to think of the condition x{0) = 0 as simply
a normalizing condition. Given x in C[0,¢ ], we define

f’v(s)ax(s): = f’v(s)a [x(s) — x(0)]
0 0

provided the integral on the right exists.
We are now ready to define the space S. Let M (L) be the
collection of C-valued, countably additive measures on
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% (L,), the Borel class of L,[0,¢]. M (L,) is a Banach algebra
under the total variation norm where convolution is taken as
the multiplication. Let o be in M (L,). Consider the function
7 defined for s-a.e. x in C,[0,7 ] by the formula

Fi{x): = L 2 exp[iJ: v(s)&x(s)]da(u). (1.2)

An element of S is an equivalence class [] of functions
which are s-a.e. equal to & for some o in M (L,). One often
uses somewhat loose terminology and refers to the elements
of S as functions, however the distinction between &, [7], and
Fe[a] will be important to us in certain places. Cameron and
Storvick show that the correspondence o—[7] is injective
(Ref. 1; Theorem 2.1) and carries convolution into pointwise
multiplication. Letting ||[&]||: = ||o|| we have that Sis a
Banach algebra. The analytic Feynman integral exists for
every [6] in S (Ref. 1; Theorem 5.1).

In light of (1.2), there is a natural way of regarding Fin
[5] as defined on C[0,z]: If x in C,[0,z ] is such that F(x) is
defined, then for any ¢ in R, take F (x 4+ ¢): = F(x).

Next we give the information necessary for our discus-
sion of the Banach algebra % (H ) of “Fresnel integrable func-
tions.” The fundamental work on the space ¥ (H ) was done
by Albeverio and Héegh-Krohn.'®!2 They do a particularly
effective job of relating their approach to the “Feynman inte-
gral” to problems in quantum mechanics and quantum field
theory. Their approach was influenced by the earlier seminal
work of Ito'*!* and DeWitt-Morette.!>'S In turn much of
the impetus for the recent beautiful work of Truman'”~'? is
found in the work of Albeverio and Héegh-Krohn.

Let H be a separable Hilbert space over R. Let M (H ) be
the collection of C-valued, countably additive measures on
% (H ), the Borel class of H. M (H ) is a Banach algebra under
the total variation norm where convolution is taken as the
multiplication. Givenu in M (H ), u is defined for every hin H
by the formula ,u(h ): = fyexplilh,h,)}du(h,). By definition,
F(H): = {p isin M (H )}. The correspondence u—u is in-
jective and carries convolution into pointwise multiplica-
tion. Hence, letting ||,u|| = [|p|], we have that F (H ) is a
Banach algebra. The Fresnel integral . (,u) is defined for ,u in

F(H ) by the formula

F i = | expl = /2] |4 \duth). (13)

There is a particular Hilbert space H which covers the
applications of the Albeverio and Héegh-Krohn theory to
ordinary quantum mechanics (but not to quantum field the-
ory). It is this space which will concern us throughout the
rest of this paper.

Let 7 be the space of R-valued functions y on [0,¢]
which are absolutely continuous and with derivative Dy in
L,[0,¢]. Let H: = {y in #¥(t) = 0}. The following inner
product makes H into a separable Hilbert space over R:

(Fo¥ad: = f (D )s)(Dy)(s)ds. (1.4)
Givenpgin M(H)and yin H

iy = [ exs(i[ (DS Nolds i) (1.5)
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Note that ,u makes sense on &% and, in fact, if yisin Hand ¢ is
in R, (y + c) = p(y)

2. THE EQUIVALENCE OF THE TWO APPROACHES TO
THE FEYNMAN INTEGRAL

Lemma 1 and Propositions 1 and 2 below are surely
known, but since we would like this paper to be simple and
reasonably self-contained, we will sketch parts of the proofs.

Lemmal:Letvbein L,[0,t] and let y bein #°. Then the
P.W.Z. integral ! v(s)dy(s) exists and we have

L ols)nts) = fov(sxby)(s)ds. 2.1)

Proof: Let v, be given by (1.1). The Riemann-Stieltjes
integral (RS) f4v, (s)d¥(s) exists. It is not difficult to argue
that f§v, (s)dyis) also exists and equals the Riemann-
Stieltjes integral where we are thinking of (;v, (s)dy(s) as a
Lebesgue integral with respect to the measure induced by the
function of bounded variation y. Since Dy is in
L,[0,:]CL,[0,2], we also have the formula v, (s)d¥i(s)

= f4v, (s)(Dy)s)ds. Now ||v, — v||,—0, and so v, —v weak-
ly, and we can write

(RS) f v, (s)dls) = fo”" (5)(D)ls)ds— f o)D) (s)ds

as desired.
Proposition 1: The differentiation map D is an isometric
isomorphism of H onto L,[0,z ]. The integration map

(o)(s): = f ordr 22)

is the inverse of D.

Proof: Givenvin L,[0,t ], let Iv be given by (2.2). Then Iy
is absolutely continuous, (fv)(t ) = 0 and DJv = v. Hence Iv is
in H and D maps H onto L,[0,t ]. D is injective because of the
requirement that y(z ) = 0 for y in H. The fact that D pre-
serves inner products is built into the definition (1.4) of the
inner product in H. u

Since D and 7 are isometric isomorphisms, they are
Borel measurable, and so

Dz =poD (2.3)
and
Fo=cgol ! (2.4)

map M (H ) into M (L,) and M (L,) into M (H ), respectively.

Proposition 2: & is a Banach algebra isometric isomor-
phism of M (H)onto M (L,). ¥ = & .

Proof: This proof is again simple, but we will carry out
some parts of it.

(a)Z isonto. Letobein M (L,). Then.# oisin M (H )and
YD (Fo)=osincegel "'oD ! =g,

b) D *u,) = P )* D (u,). Let Bbein % (L,). Using
the Change of Variables Theorem to justify the third equa-
lity, we can write

(2 u,)*Z (u,)1(B)
- f (DB — vid (D ps)(v)
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= [ mID- B lden
_ L#,[D ~'B— D ~'Dyldu,ly)

- L#, (D ~'B — y1dusy)

= ()0 ~'B)

= [Z () 1(B).

(c) [|Z || = ||p]|- Given a Hilbert space H, let C, (H,)
denote the space of C-valued, bounded, continuous func-
tions on H,,. C,(H,) is a Banach space under the supremum
norm. Let B,(C,(H,)) denote the unit ball of C,(H,). It is
clear that every element iz, of M (H,) defines, via integration,
an element of the dual of C,(H,). In fact this imbedding of
M (H,} in the dual of C, (H,) is a Banach space isometric iso-
morphism. Hence we can write

| Zul| = sup ff(v)d L)

P —

fis in B (C,,(Lz))]

= sup

P,

[ rwrion | s in B, i)

= sup

——

Lf(Dv/)du(r) fis in Bl(cb(Lz))]

<l leell,

since foD is in B|(C,(H )) for every fin B,(C, (L,)).

To get the opposite inequality, let o in M (L,) be such
that # o = u and then argue much as above that
170l <[lol; thatis, | ju||<|| Pul|. n

Let 4 bein M (H ) and let 0 = Zp. In addition to the
functions 1 and &, we may consider the ordinary Fourier
transform & of o. & is defined for every u in L,[0,] by the
formula z;(u): = [, explifou(s)u(s)ds}do(v). The next result
describes the relatibnship between [L, g, and &.

Theorem 1: Let o = Z 1 where p is in M (H ). Then

p=069D=35|,. (2.5)

Proof: Let v be in H. By Lemma 1 and the Change of
Variable Theorem we can write

o1y = Lexp[i [[usirifaors
= J;CXP [iJ:u(s)(Dy)(s)ds]da(v)

a(Dy)
J‘Llexp[iJ;)lu(s)(Dy)(S)ds]d (@eD ~"v)

[ exoli[ wrsiopisas|autr

= uly)-
The correspondence between the Banach algebras
% (H ) and S can now be easily established by using the facts
assembled above and certain facts already in the literature.
Theorem 2: The map ¢:5— % (H ) defined by
¢ ([6])) = G| 4 identifies S and ¥ (H ) isometrically and iso-
morphically as Banach algebras. The inverse of ¢ is given by
¢ ~'u) = [TH).
Remark: The maps ¢ and ¢ !

Il

can alternately be de-
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scribed in a way that is less precise but perhaps easier to
remember. Let & “in” Sbe given by (1.2}, then ¢ (0’) = G| y;or
given ,u, in% (H o~ '(,u) is the unique element & ““in” S such
that |, =

Proof: Let [6] bein S. Let u = # o with .# given by
(2.4). Cameron and Storvick have shown' that the map ¢,
sending [d] to o is a Banach algebra isometric isomorphism
of Sonto M (L,). By Proposition 2, .7, sending g to . ¢ = y,
is an isometric isomorphism of M (L,) onto M (H ). Further,
the map ¢, sending £ o = u to# ¢ = u is an isometric iso-
morphism of M (H ) onto % (H ) as is known and is discussed
by Albeverio and Héegh-Krohn.'' Hence ¢: = ¢,0.# o, is a
Banach algebra isometric isomorphism of S onto % (H ). Fin-
ally, by Theorem 1, the action of ¢ ([5]) = /u FoonH
agrees with the action of & on H.

We end this section by showing that there is a simple
relationship between the Fresnel integral of [L and the analyt-
ic Feynman integral of the correspondmg .

Theorem 3: Let i belong to % (H ) and let [ ] be the
corresponding element of S. Then the Fresnel integral of ,u
equals the analytic Feynman integral with parameter g = 1
of Zpi; that is

an f, — n
f (G rxidmix) = 7 (). 2.6)

CulO.r}

In fact, for any Fin [Z ],

an f,
f F(x)dm(x) = .7 ().

C,l0.2]
Proof: Cameron and Storvick (Ref. 1; Theorem 5.1)
show that

an f, e
f (Tr)x)dmix) = f expl |[v][2 2}d (T ).

Cl01]
Albeverio and Hdegh-Krohn (Ref. 11; p. 18) have the
formula

Fi) =Lexp{ 713 2 el

But by the Change of Variables Theorem

fexpz*l 3 2i}d (Z p)v)
_ J exp{ — 1| |v]12]2)d (woD "))
=Lexp{ —i|[DYI12}duy)

- L exp{ — il|7]1%12}duty).

3. SOME CONSEQUENCES OF THE EQUIVALENCE

In this section we give some simple consequences of the
theory in Sec. 2 and make some general comments, based on
our experience to date, on how to make use of the equiv-
alence between .S and .% (H ). We intend to pursue this topic
further in later work.

There are of course certain results which Theorems 1, 2,
and 3 allow us to immediately carry over from one theory to
the other. For example, any statements about Sand .5 (H ) as
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Banach algebras are obviously of this type. Certain other
results can be obtained with a minimal amount of effort. For
example, there are certain functions on Wiener space which
are of physical interest and which have been shown to be in
S 45 but which were not known to be in F (H ). These are
functions arising from certain time dependent’* and qua-
dratic potentials,” respectively. In fact, before the present
work, it was believed by this author and others that the func-
tions arising from quadratic potentials® were examples of
functions in S whose “restrictions” to H were not in & (H ).
However, the theory in Sec. 2 and the results of Ref. 5 allow
one to show quite easily that these functions arein & (H ). We
now formally state the results we have just been discussing.
Coroliary I: Let 6:[0,r ] X R—C be a function which for
each s in [0,7] is the Fourier-Stieltjes transform of a C-val-
ued, countably additive Borel measure o, on R; that is,

6 (s,u) = fexp{iuv}das(v). (3.1)

We suppose that for each Borel subset Bof R, o, (B ) is a Borel
measurable function of sand that | |o, || isin L,[0,z ]. Then the
function

7171 = exo [ o155 — yiones| (3.2)

isin & (H).

Remarks: (i) The multivariable version of this with R
replaced by R” is valid and no harder to treat. (ii)) When the
potential 6 is independent of s, the functions (3.2) are well-
known to be in ¥ (H') and have been extensively treated in
Refs. 10-12,19.

Corollary 2 is the only result in this paper which we will
state in a multivariable setting. We do so, since, in this case,
going from the one variable to the multivariable setting is not
entirely routine. Here H * will denote the space of functions y
on [0,¢] to R’ each of whose components belongs to H.

Corollary 2: Let

-

g = exp[ - f (A4 5)(Hs) — MOV, [34s) — ?(omds],

(3.3)

where {4 (s} = (a;;(5)):0<s<1 } isacommutative family of v by
v real, symmetric, positive definite matrices such that the
(necessarily positive) eigenvalues { p,(s),..., p,(s)} have
square roots which are of bounded variation on [0,z ]. Theng
isin & (H"Y).

Remarks: (i) It is easy to show (Ref. 5; Corollary 1) that
the hypothesis on the eigenvalues is satisfied if the functions
a, are continuous and of bounded variation on [0,¢ ]. (ii) Since
F (H ") is a Banach algebra, one has immediately that pro-
ducts of functions as in Corollary 2, and the v-dimensional
version of Corollary 1, are also in % (H ")

We finish this discussion with a few comments on the
proof of Corollary 2. Virtually the same comments can be
made about the proof of Corollary 1. The function (3.3) can
be thought of as acting on the v—~dimensional space C*[0,z ].
Let us denote that function by G. It was shown in Ref. 5 that
G “‘belongs” to the Banach algebra S; more precisely, it was
shown that there exists oin M (L 4 [0,z ]) such that Gisin [5].
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Since the theory in Sec. 2 tells us that &|,. is in # (H "), one
might think that Corollary 2 follows immediately. The situa-
tion is a bit more complicated than that however since H *is a
negligible subset of C°[0,z ], and G in [&] implies just that
G = 7 s-a.e. on Wiener space. However, if one reads the
proofs in Ref. 5, one sees that G = & on H ” and so Corollary
2 follows. Some minor modifications of the proofs in Ref. 5
are needed to see this, but the modifications are actually
simplifications and are rather obvious and so won’t be in-
cluded here. [The essential idea is that in arguments in Ref. 5
that are made for m X m-a.e. (x,w), replace x by fixed y in H
and argue for m-a.e. w.]

When Corollaries 1 and 2 are combined with various
theorems of Albeverio and Héegh-Krohn'*'! and Tru-
man,'® one obtains further corollaries. Specifically several
theorems from Refs. 10, 11, 19 involve a hypothesis that a
function involved isin & (H ). All such results are now seen to
apply to the functions (3.2) and (3.3} and their products. Cer-
tain other theorems from Refs. 10, 12, and 19 are done for
special classes of functions in % (H ). It seems likely that at
least some of these results are valid for functions of the forms
{3.2) and (3.3), but this remains to be investigated.

Theorem 2 of Truman’s paper'® explores the connec-
tion between his “Feynman” map acting on % (H ) and the
Wiener integral. We will see that the work in Sec. 2 allows us
to extend and to better understand Truman’s Theorem.

Truman shows that for f = u in % (H ), the Feynman
map ¥ (¥ ms<0) is given by the formula

Ff) = Lexp{ — S| 2}, (3.4

Note that . '( f} is just the Fresnel integral (1.3), & (f), of f.
Since the result of present interest only concerns the action
of #* on # (H ), we can and will simplify our discussion by
regarding (3.4) as the definition of 5.

Next we state Truman’s result. By C;(0,¢ ) Truman
means the space of continuous functions on [0, ] which van-
ish at ¢. E denotes the integral with respect to the Wiener
measure on Cy(0,2). As noted earlier the functions in .S and
% (H) may be thought of as acting on C [0,7] and 7 respec-
tively in a natural way, and the fact that the elements of
C,(0,¢ ) vanish at ¢ rather than at 0 is actually of no conse-
quence for our present purposes.

Theorem4: (Ref. 19, p. 80) Let f bein % (H ), then 7 f)
is a regular analytic function of s in .# ms <0, continuous in
Fms<0. If fin F (H) is a continuous functional
S:Co(0,t )—C, then

F(f)= lim F17<(f),

e—0"

E(f)=1lm& ~'*<(f). (3.5)
€0
Interpolation gives

I?Se “(f)l < I |fl ll — (Za)/v' lfl I(Ozoa)/ﬂ,

O<agn/2, >0, (3.6)
where || f]], = sup{| f(¥)]:7 is in C,{0,1)}.

Remarks: (i) The first assertion is a straightforward con-
sequence of (3.4). The second assertion follows immediately

from the first as soon as one shows that E ( /) = % ~(f). The
inequality {3.6) is easy for @ = 0 and & = #/2, and, for gen-
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eral a, is then a consequence of the Hadamard Three Lines
Theorem (Ref. 20; p. 33). (ii) Note that the second and third
assertions of the theorem deal with fin & (H ) for which it is
assumed that there is an extension to a function which is
defined on all of C,,(0,¢ ) which is continuous in the sup norm.
However, the work in Sec. 2 assures us that for every f = ,& in
F (H ), there is associated a unique element [¢] in S such that
0|y =/ We will see below that if we take any Fin [] as the
“extension” of f, the second and third assertions of Truman’s
Theorem go through.

Corollary 3: Let f = pbein F (H ), then F( f)is a regu-
lar analytic function of s in .# ms < 0, continuous in # ms<0.
Let 0 = Y u so that §|, = f. Then for any Fin [5] we have

fc | Fixkdmix)= 7 (), (3.7)
and so

F(f) = lim F1= (),

f Fixjdm(x) =1lim % ~"*<(f). (3.8)
Cyl0,t] -0

Interpolation gives

L “AIKILAIN - B R (1827, 0<a<w/2,
s>0.  (3.9)

Proof: Our first assertion is exactly the same as Tru-
man’s first assertion. The second follows immediately from
the work in Sec. 2. We now show (3.7). (3.8) will then follow
immediately.

f F{x)dm(x)
G0,

= L o alx)dm(x)

= L . ULzexp{iJ:u(s)ax(s)}da(v)]dm(x)
_ L | [L,[o,. ]exp{iJ:u(s)ax(s)]dm(x)]ddv).

Applying a basic Wiener integration formula [Ref. 5; (2.1)] to
this last expression and then using the fact that
(2m)~ "2exp( — u*/2)is its own Fourier transform, we obtain

J F(x)dmix)
Cy(0,t]
=f [(27)—”2 f expti||v]|u}exp( — u/2)du |dofv)
— [ exp(— [1v113/21ote
- f exp( — ||v|[2/2)d (oD ~')(v)
_ L expl — || Dy| 2 /2)duly)

_ L expl — | 7|14 /2)duly)

=5 ‘(f ),
where this last equality follows from (3.4).
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The argument we have just made can be trivially ex-
tended to show that for s> 0,

F 5 f) = F (s~ 2x)dmi(x).

ColO,t ]

(3.9) now follows immediately for a = 7/2 and @ = 0. The
Hadamard Three Lines Theorem yields the result for gen-
eral « just as in Truman’s setting.

There are many further aspects of the relationship
between ¥ (H ) and S which remain to be explored. Also it
seems likely that the work of Albeverio and Héegh-Krohn
which is directed toward quantum field theory ought to have
a “Wiener space” counterpart. However, we will be satisfied
in this paper with one additional application. Before doing
that we give a few rather vague but perhaps helpful general
impressions derived from our (still limited) experience in ap-
plying the results of Sec. 2.

(1) Once one realizes the nature of the correspondence
between .S and ¥ (H ), the formal outline of arguments often
translates readily from one space to the other.

(2) In order to get information about specific functions f
in & (H ) out of information about the corresponding “func-
tion” in .S, some additional argument is needed because H is
anegligible subset of C[0,¢ ]. It appears that such arguments
will usually be rather simple. (This point was already dis-
cussed a little in connection with Corollaries 1 and 2.}

(3) When one is attempting to carry results from the
Hilbert space setting to the Wiener space setting, it seems
that some measure-theoretic subtleties may arise. This will
be illustrated somewhat by our next application, but, in this
case, a well known result about translation in Wiener space
immediately takes care of the situation. In another result
which we have just recently proved, the subtleties are not so
readily overcome and, indeed, are intimately related to an
apparently as yet unanswered question asked earlier in Ref.
7, p. 165. This result seems too involved to include since it is
our hope to keep this paper simple and reasonably self-con-
tained.

(4) Is the Hilbert space setting or the Wiener space set-
ting more convenient to work in? Hilbert spaces of course
have many pleasant properties, and one seems less likely to
encounter delicate measure—theoretic questions in that set-
ting. On the other hand a great deal is known about Wiener
space, and there is a certain probabilistic intuition which one
can bring to bear. In point of fact, certain things have been
done in each setting which were not done in the other. Which
setting is more convenient is probably, at least in part, a
function of one’s background and the particular problem at
hand.

There is concern by some that the space of paths H is
not appropriate for quantum mechanics. Feynman com-
mented in his original paper®' that the paths which should
contribute most to his integral are the highly nondifferentia-
ble paths familiar from Wiener space. Along related lines,
Truman comments (Ref. 18, p. 1745) that the paths in H may
be too smooth to provide a good model for quantum me-
chanics. Whether this should be considered a serious prob-
lem or not is not really clear to us, but the results relating
Z(H ) and S say that, at least for a certain large class of
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potentials, it essentially doesn’t matter whether the underly-
ing space of paths is taken to be H or Wiener space.

In their monograph (Ref. 11, pp. 19-20), Albeverio and
Héegh-Krohn showed how the Fresnel integral is trans-
formed under a translation. In a recent paper,” Cameron and
Storvick have proved a similar result in the setting of the
Banach algebra S. We will show how Cameron and Stor-
vick’s result can be obtained from Albeverio and Héegh-
Krohn’s result via the work in Sec. 2. We should mention
that both results have their roots in the Cameron and Martin
Translation Theorem for Wiener space.?

We will need two simple results about how certain mea-
suresaretransformedbythemap & :M (H }—M (L,). Weneed
only very special cases of this for our present purposes, but
we state rather general Propositions since they seem likely to
be useful in the future. We omit the simple proofs.

Proposition 3: Let u be in M (H ) and let 0 = L be the
corresponding measure in M (L,).

(a) Let A be a C-valued Borel measurable function on H.
Then hisin L,(u) if and only if ol is in L (o). Further, if & is
in L,(«) and u,, is defined by du,,(y): = h (y)du(y), then pz,, is
inM(H)and Z(u,) = 0y, where do,.; (v): = h(I (v))do{v).

(b) Let g be a C-valued Borel measurable function on
L,[0,t]. Then g is in L (o) if and only if goD is in L (u).
Further, if g is in L (o) and o, is defined by do, (v):

= g(v)do(v), then o, is in M (L,) and # (0, ) = p,.p, Where
dpg.p(¥) = 8(D (¥))du(y)-

Proposition 4: Let u be in M (H ) and let 0 = Y be the
corresponding measure in M (L,).

(a) Let R, be an injective map from H into H which
carries Borel sets to Borel sets. Then uoR, is in M (H ) and
D(uoR,)=o0°R,,where R, = DoR el

(b) Let R, be an injective map from L,[0,¢ } into L,{0,7 ]
which carries Borel sets to Borel sets. Then goR, isin M (L,)
and S (0°R;) = uoR,,, where R;; = I°R, oD.

Givenaind?, let T,:C[0,t ] -C [0, ] bedefined by T, x:

= x + a. The restriction of T, to #° carries ¥ into 5.

Theorem 5: {Albeverio and Hgegh-Krohn). Let @ be in
J¢ and let f= bein F(H). Let f,: = foT, and define /'
S —C by fy): = exp{ — ila,V)x} F¥). Then £, =z, and
[ = u, are in & (H ), where i, and u, are defined by
du,(y): = exp{i(a,y)y }du(y) and u,: = uoT, . Further

F(fa) = explillal|/2}.7 (f*). (3.10)

Corollary 4: (Cameron and Storvick). Let a be in /#” and
let Fe[] where [5] is in S. Let F,: = FoT, and define F'
:C [0,t ]->C by F“x): = exp{if",(Da)(s)dx(s)} F (x). Then F,
€[&,] and F'“¢[5,), where o, and o, are defined by
do(v): = exp|ifiv(s)da(s)}do(v) and o,: = 0°T,. Further

an f, an f,
f F,(x)dm(x) = exp{i||a||%/2} F)dm(x).

C,[0,1) Cyl0,r]
Proof:Lety = S oandlet f=pu. Letu, and 1, be as in

Theorem 5. Let 7, = Y u, and 7, = D u,. By Proposition 3
and Lemma 1,

dr\(v) = explila,lv)y }dotv)
= exp[if (Da)(s)(DIv)(s)ds]dtdv)
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= exp{iJ:u(s)aa(s)]da'(v) = do,(v).

By Proposition 4, 7, = goDoT,ol. Thus for B in #(L,),
75(B) = o(DIB + Da) = (0°Tp,)(B) = 0,(B). Thus
o,=Yu,and 0, = Dy,

By Theorem 5, F (2,) = exp{i||a|[%,/2} F (). It fol-
lows immediately from Theorem 3 that

an f, an f,
[* simamix) = explillally/2) [ oypekdmi)
Col0,t] Col0,1]

Thus the theorem will be proved as soon as we show that
F,e[5,] and F'“€[5,]. (It is in showing that F, €[7,] that one
needs to be a little careful with the measure theory.) We write
F=~G when F= Gs-a.e.

Fe[d,):5,x) = L exp[iJ:v(s)ax(s)]dal(v)

zJLzexp[ifv(s)a [x(s) + a(s)] ]da(v)

~d(x + a).
The proof that F,e[&,] will be finished if we show that
o{x + a) = F(x + a) for s-a.e. x in C,[0,¢]. Let N: = {x in
C,[0,t ]:F (x)#{x)}. N is scale-invariant null since Fe[d].
Now &{x + a) = F(x + a) or, equivalently,
[x + a — a(0)] = F[x + a — a(0)] except for x’s such that x
is in N—a + a(0). So it suffices to show that pN-pa + pa(0) is
Wiener null where p is an arbitrary positive number. But
m(pN ) = Osince N is scale-invariant null. Also pa—pa(0)isin
#, and, it is well known from the translation theory in Wie-
ner space, that translation by such elements preserves sets of
measure 0.

F9e[d,]:0,(x) ::J; exp[i fo 'u(s)ax(s)]daz(u)
=~ i exp{ij:v(s)ax(s)]d (o°T p, )(v)

:Lzexp[iJ: [vs) — (Da)(s)]&x(s)}da(v)

zexp{ - ‘fo’ (Da)(s)&x(s)]p(x)
~F“(x).

ACKNOWLEDGMENTS

This work was begun while the author was on leave at
the Mathematisches Institut, Universitat Erlangen-Niirn-
berg. The author gratefully acknowledges the support of the
University of Nebraska as well as the support and hospitality
of the Institut and especially the kind help of Professor Kol-
zow and Dr. Tischer.

‘R. H. Cameron and D. A. Storvick, “Some Banach algebras of analytic
Feynman integrable functionals,” in Analytic Functions, Kozubnik, 1979,
Springer Lecture notes in Mathematics, Vol. 798 (Springer, Berlin, 1980),
Pp. 18-67.

G. W. Johnson 2095



’R. H. Cameron and D. A. Storvick, “A new translation theorem for the
analytic Feynman integral” Preprint, U. of Minnesota, Minneapolis, Min-
nesota.

3R. H. Cameron and D. A. Storvick, “Analytic Feynman integral solutions
of an integral equation related to the Schroedinger equation,” J. D’Ana-
lyse Math. 38, 34-66 (1980).

“G. W. Johnson and D. L. Skoug, “Notes on the Feynman integral, 1,” Pac.
J. Math. 93, 313-324 (1981).

3G. W. Johnson and D. L. Skoug, “Notes on the Feynman integral, I1,” J.
Func. Anal. 41, 277-289 (1981).

°G. W. Johnson and D. L. Skoug, “‘Notes on the Feynman integral, I1I: The
Schroedinger equation,” to appear in the Pac. J. Math.

’G. W. Johnson and D. L. Skoug, “Scale-invariant measurability in Wiener
space,” Pac. J. Math. 83, 157-176 (1979).

*R. E. A. C. Paley, N. Wiener, and A. Zygmund, “Notes on random func-
tions,” Math. Z. 37, 647-688 (1933).

°J. L. Doob, Stochastic Processes {Wiley, New York, 1953).

'9S. Albeverio and R. Héegh-Krohn, “Feynman path integrals and the cor-
responding method of stationary phase,” in Feynman Path Integrals
{Marseille, 1978), Springer Lecture Notes in Physics, Vol. 106 (Springer,

1978), pp. 3-57.

'S, Albeverio and R. Héegh-Krohn, *Mathematical Theory of Feynman
Path Integrals,” Springer Lecture Notes in Mathematics, Vol. 523 (Spring-
er, Berlin, 1976).

'2S. Albeverio and R. Héegh-Krohn, “Oscillatory integrals and the method
of stationary phase in infinitely many dimensions, with applications to the
classical limit of quantum mechanics, 1,” Invent. Math. 40, 59-106 (1977).

2096 J. Math. Phys., Vol. 23, No. 11, November 1982

K. Ito, “Wiener integral and Feynman integral,” Proceedings of the 4th
Berkeley Symposium Mathematical Statistics and Probability (Univ. Cali-
fornia Press, Berkeley, 1961), Vol. 11, pp. 227-238.

14K. Ito, “Generalized uniform complex measures in the Hilbertian metric
space with their application to the Feynman path integral,” Proceedings of
the Sth Berkeley Symposium on Mathematical Statistics and Probability,
{Univ. California Press, Berkeley, 1961), Vol. II, pp. 145-161.

13C. M. DeWitt-Morette, “Feynman path integral definition without limit-
ing procedure,” Comm. Math. Phys. 28, 47-67 (1972).

'*C. M. DeWitt-Morette, “Feynman path integrals, 1. Linear and affine
techniques, I1. The Feynman~Green function,” Comm. Math. Phys. 37,
63-81{1974).

'7A. Truman, “Some applications of vector space measures to non-relativis-
tic quantum mechanics,” Dublin, 1977, Springer Lecture Notes in Math-
ematics, Vol. 644 (Springer, Berlin, 1978), pp. 418-451.

'"®A. Truman, “The Feynman maps and the Wiener integral,” J. Math.
Phys. 19, 1742-1750 (1978).

YA. Truman, “The polygonal path formulation of the Feynman path inte-
gral,” in Feynman Path Integrals (Marseille, 1978), Springer Lecture Notes
in Physics, Vol. 106 (Springer, Berlin, 1978), pp. 73-102.

%M. Reed and B. Simon, Fourier Analysis, Self-Adjointness (Academic,
New York, 1975).

*IR. P. Feynman, “Space-time approach to nonrelativistic quantum me-
chanics,” Rev. Mod. Phys. 20, 367-387 (1948).

22R. H. Cameron and W. T. Martin, “*Transformations of Wiener integrals
under translations,” Ann. Math. 45, 386-396 (1944).

G. W. Johnson 2096



Approximate methods for the solution of the Chandrasekhar /-equation

C.T. Kelley

Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27650

(Received 23 April 1982; accepted for publication 25 June 1982)

We consider two methods of approximate solution to matrix valued analogs of the Chandrasekhar
H-equation. We give conditions under which they converge. The first method is a generalization
of approximation of the integral by a quadrature. The second is Newton’s method.

PACS numbers: 02.60.Cb, 95.30.Jn

I. INTRODUCTION
Various analogs of the Chandrasekhar H-equation,’

RN
Hip=1+% f L Hidy H(p), (1)

are useful in the solution of exit distribution problems in
radiative transfer and neutron transport.'~” In this paper we
consider two types of approximate methods for solution of
these problems.

For example, it is known that Eq. (1) has, forO<c < 1,
two solutions, only one of which is of importance physically.
This solution, which we denote by H, is analytical in ¢ for
le| < 1 and continuous for |c|< 1, O<u<].

If we approximate dv by

dyylv)= Z ay, 6(v —xy)dv, (2)
with
aN’. >0,
dyy =1, (3)

and let H), be the physical solution to

1
¢
Hup) =1+ S Hylp) [ LBy, @
2 o p+v
one would like to prove that H,, converges to H in some
sense. Ifa N; and x w; are the weights and nodes for a quadra-

ture scheme, Kelley® has given conditions under which H,
converges to H uniformly in x for any fixed ¢, ¢} < 1. Ina
different situation, Masson® has shown convergence of a
scheme of this type for 0 <c <§.

The methods of Ref. 8 require estimates of H,( ) that
are independent of N. Such estimates cannot be made for
¢ = 1 and only partial success for 0 < ¢ < 1 has been made in
matrix-valued problems when these methods are used.

In Sec. I1 of this paper we show that under certain hy-
pothesis approximations of the form of Eq. (4) converge to
the physical solutions of the matrix valued analogs of Eq. (1)
that arise in multigroup neutron transport” for |c| < 1.

We require some notation that allows us to write these
matrix-valued H-equations in a compact way.>'® The H-
equation for multigroup neutron transport? is a coupled sys-
tem of equations for two n X n matrix-valued functions H,
and H,
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V'Y (WH
H,(u)=1+f“—L —%—’V(i)dvlf,(m,

2
H,(v\¥
H(p) =1+ )f ;LV‘”’

Here ¥ (v)isa known n X n matrix with non-negative entries.
We normalize ¥ by requiring || §o ¥ (v)dv ||,, = 1, where ||
||, denotes spectral radius. With this normalization H, and
H, exist for all |c|<]1.

For convenience we let X denote the space of 2n X 2n
matrices of the form

A4, 0) ]
A=(o 4)’ (©)

where 4, and A, are n X n matrices and ~ denotes transpose.
We define a norm on X by

l4lx= 3 la;"+1a;"], (7)

Lj=1

(3)

where ;' and a;;"" are the entries of 4, and 4,.
For A€X given by Eq. (6) we define A * by

) (A, 0

We define H and D as X-valued functions of u€[0,1] by
" (H ;0 )
“\o RH)’

¥ 0
o-(5 2)
0 v
With this notation established we may write Eq. (5) as
an equation for H * as

©

1
H*(m=E+if Hy)—E—DwdvH*p) (10)
2 Jb H+v
=FE+ (¢/2)(LH)H * .
Here E is the 2n X 2n identity matrix and L denotes the inte-
gral operator.
The approximations we consider here are formed by

replacing D (v)dv by dD,(v) and letting H,, be the physical
solution, if it exists, to

HN*—E+ (Ly Hy) Hy*, (11)

where, for X-valued F,
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1
(L P )= [ FildDyt). 12)
o 1+ v
The measure dD,, will be assumed to have the form
dv, 0
D, = ( 0 d@}\/) . (13)

We let ||-||s, denote spectral radius. Our assumptions on the
sequence d¥,, are

(H1) || £ d¥y || <1

{(H2) For every n X n matrix valued function f with non-
negative entries

J; SfVd¥y(v)>0.

(H3) For every continuous 7 X n matrix valued
function f

lim f () = f )% i

In Sec. II we prove
Theorem (1.1): Assume the sequence {dD, } satisfies
(H1}H{H3). Then H,, exists for |c|<1 and

lim max || H () — Hyl(p) |x =0 (14)

N—ow Ou<l
uniformly for ¢ in compact subsets of {c| |¢| < 1}.

A second approximation method we consider is New-
ton’s method. In Sec. IIT we extend some results of Ref. 11 to
this matrix-valued situation. Problems are encountered for
¢ = 1 and we show how results of Reddien,'? Griewank and
Osborne, " and Decker and the author'*'* may be applied to
that situation. These results therefore apply both to multi-
group neutron transport and to Rayleigh scattering of polar-
ized light.! We also consider the chord method in this set-
ting. The analysis in Sec. III applies as well to approximate
equations like Eq. (11} if || §§ d¥y ||, = 1.

Il. PROOF OF THEOREM (1.1)

Let K and K, be n X n matrix valued functions given,
for x> 0, by

K(x):Ll e = X7 W(v)d—:, (15)

1
Kyix) = L e ""/V%dWN . (16)

For matrices 4,B wesay 4 »Bifa; >b; foralliandj. We
let |4 | be the matrix with entries |a,; |. Assumption (H2) im-
plies that K, >0; K0 by our assumption that ¥>0.

Welet . denote the Banach space of X-valued integra-
ble functions on (0, o } with norm

IF|| = f 1 (x)] i (17)
Let 7,Tye.Z be given

(5 2)

Ky O 19
TN=(0 kzv) (19)
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Consider the integral equations in .%,

r(x)—%f: Tk-WrOMy=STw, 0

It < f: Tuls =Ty oMy =S Tle). (21)

Our assumptions on ¥ and d¥,, imply, as in Refs. 2 and 3,
the following theorem:

Theorem (2.1): For |c| < 1, Eqgs. (20) and (21) have
unique solutions in .¥". Moreover, for |c| < 1,

H*( ) =E+J:° el =" [ (x)dx , (22)

Hy*p)=E+ r el = >/ [y (x)dx . (23)
()

Theorem (2.1) implies that we need only show that I,
converges to in I" to prove Theorem (1.1). This will be an
immediate consequence of the following lemma.

Lemma (2.2): lim [Ty —T|, =0.

N—oo

Proof: By assumption (H3) Ty (x) converges to T (x) for
each fixed x0. Also the definition of || ||y implies that if
Fe?,

F ( l )
O R ’
tllell

71|~

f SR )]+ |FY ()l
(4]

Lj=1

$ ([ 1Fwenia+ [ e eoian)

Lj=1

J:o |F(x)|dx

X
Hence, if we can show that
lim |Ty(x)|dx = f |T (x)|dx (24)
N—w Jo 0

we will be done. ! But, as 7,7, >0 we have

[ imatmax = | aDyi).

This implies Eq. (24) by (H3). The proof of the lemma is
complete.

To complete the proof of the theorem we let (c/2).7” and
(¢/2)7 y denote the integral operators in Eqs. (20 and (21),
respectively. We have,” for FeL '(X),

(7 -7 )F|| <leliT=Tule 1FIL
25

Hence .7 , converges to.7 in the operator normon .Z .
As? [I—(c/2) T ] 'existsforall N, [1 —(c/2) T ] ™"
must converge to [I — (¢/2) 7]~ 'innorm. Let |||-||| denote
the operator norm on ..

Now choose € > 0, let NV be sufficiently large so that for
k>N

[-57)"-(-537) W<z
(26)
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€
ITe =Tl <5

[H T2

We have, for k> N,
V=Tl <l [(

I o

Dllewich -

ol )'Hl

T — T, <e€.
2||T|l]

This completes the proof of Theorem (1.1) as € > 0 was arbi-
trary.

lIl. NEWTON’S METHOD

The theorems and proofs in this chapter are given in the
context of Eq. (15); however, they apply as well to the matrix-
valued H-equation that arises in scattering of polarized light
in the case ¢ = 1.

We rewrite Eq. (10) as

FH(c)=Hlc)—E—(c/2)H({c)QH(c)=0, (28)

where, if € denotes the space of continuous X-valued func-
tions on (0,1) with the uniform norm, the operator Q is given,
for Fe<, by

(QF)() = _L [/l + )] D (vVF *(v)dv. (29)

F . is acontinuous nonlinear map on the space % . The Fre-
chet derivative of & , evaluated at Ge% isalinear map on &
given, for ue% by

Fl(Glu=u—(c/2)GQu — (c/2) uQG . (30)

The classical Newton—-Kantorovich theorem!’, stated
in our context, is the following

Theorem (3.1): If 5 (H (c)) has a bounded inverse on
% and if H,, is sufficiently close to H (c) the Newton iterates

Hn=Hn—1—yé(Hn—-l)—l‘g‘—c(Hn—l) (31)
converge to H (¢} and there is K > 0 such that
|H () — H, || <K ||H(c)~H,_, ||*. (32)

We require the following lemma due to Mullikin and
Victory®. The notation is from Ref. 18.

Lemma (3.2): . (H (1)) has a one-dimensional null
space Vand closed range X with ¥ = N @ X. Nis spanned by

Pe% where @ (u) = uPH (u) and
P O)
— *= —~
P=P (0 5/ (33)

Pisan n X n matrix with positive entries and P2 = P. Finally,
F . (H(1)) has an inverse for |¢|<1, c#]1.

The following theorem implies that for |¢| < 1, the New-
ton iterates converge to H (c) if H,, is sufficiently close to H (c).
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Theorem (3.3): For |c| < 1, ¥ (H (c))” " exists on & .
Proof: Define a bounded linear operator .27(c) by
A (c)F = FQH (¢) + H (c)QF . (34)

It is known'? that if H (c) is expanded in a power series in ¢
about ¢ = 0, then the coefficients are matrices with non-neg-
ative entries. Hence, as D (v)>0,

| ()F |<|F|Q|H (c)| + |H (c)|Q |F]|

<|F|QH (|c|) + H(|c)Q | F| (35)
<|F|QH(1)+ H(1)Q|F|
= (1)|F].

For |¢| < 1 we have, by Lemma (3.2), that the series

S (&) =g 36

converges in the operator norm. By Eq. (35), the series

%/ e\m .

3w
converges as well and thisis %/ (H (c)) ~'. This completes the
proof.

The case ¢ = 1 is very different. Here Lemma (3.2) im-
plies that the hypothesis of Theorem (3.1) do not hold. We
will show that if the initial guess H, is carefully chosen, that
the Newton iterates still converge to (H2) but at a slower rate
than that given by Eq. (32).

We define an inner product [-,-] on % for F,Ge% , as
follows:

Fi(p) 0
FW:( 0 F,(/t))’

Gilu) O
G“‘)=(o é,w))’

let
(F61= 3 [ 7 G} )+ F G .
i, —1
’ (37)
We now define a projection & , from % to N by
Py F= E’?_*]_ D, (38)
[2,9*]

where @ *>0is orthogonal to the range of % (H ) in the sense
that [#'(H )F,® *] = 0.> We wish to apply the following re-
sult due to Decker and the author.'*

Theorem (3.4). Let ¢ = 1. If

P (PP )F#0, (39)

and H, is chosen sufficiently close to H (1) subject to the addi-
tional condition
\Ho — Z n Hol|<6 | Z y Hyl, (40)
with 6 sufficiently small, then the Newton iterates converge
to H (1) and
H, —H(l
A T an
frea ” n—1 _H(l)“ 2

We now observe that Eq. (39) holds. To see this we sim-
ply notethat >0, D #£0P *50,P *3£0,ifu #0. AsD (v)>0
and not identically zero, [ 2Q®,® *] > 0. This implies Eq.
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(39).
The chord method was considered for scalar H-equa-
tions in Ref. 11. The chord iterates are, for n>1,

Kn =Kn—»l —‘?‘CAI(KO) ?C(Kn—l)' (42)

The following theorem is a direct consequence of Theorem
{3.3), general results on the chord method in Ref. 17, Eq. (39),
and new work of Decker and the author."*

Theorem (3.5). For |c| < | the chord iterates K, con-
vergeto H (c)if K, is sufficiently close to H (c). Moreover there
is 0 < o{c) < 1 so that

i K —H e o). (43)
n-voo HK,,,l —H(C)“(

If ¢ = 1, K, is sufficiently close to H (¢) and if

for some @ sufficiently small then the chord iterates converge
to H (c) and there is o> 0 so that

1K, —Hlcl|<o/n . (45)

The reader should note that at ¢ = 1 convergence of
both Newton’s method and the chord method is much
slower than for |¢| < 1. For the chord method convergence is
so slow that the method should not be used.
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Two Lagrangians are s-equivalent (s for “solution”) if they yield equations of motion having the
same set of solutions. We consider Lagrangians s-equivalent to T — V, where T'is flat space kinetic
energy and ¥V is a spherically symmetric potential. We show that for n = dimension of space >3,
there are many s-equivalent Lagrangians which cannot be formed from T — V by multiplication
by a constant or addition of a total time derivative. In general these s-equivalent Lagrangians lead
to inequivalent quantum theories in the sense that the energy spectra are different.

PACS numbers: 03.20. + 1, 02.30.Wd, 46.10. + z

I. INTRODUCTION

In the last couple of years, there has been a revived
interest in the inverse problem of the calculus of variations
for Newtonian mechanics.' One of the main motivations for
taking up that study is the well-known fact that the classical
equations of motion of some dynamical models do not
uniquely determine their Lagrangian. This results in an am-
biguity for the Hamiltonian, with a corresponding ambigu-
ity in both the quantum and the statistical theories of these
systems (uniqueness aspect of the inverse problem). Another
motivation is provided by the usefulness of Lagrangians in
the search for exact or approximate solutions to the equa-
tions of motion, as well as in the study of their stability (exis-
tence aspect of the inverse problem).

Recently, one of us has shown how the inverse problem
can be handled—and in fact, solved completely for each par-
ticular set of forces—by studying the restrictions on the co-
ordinate-velocity Poisson brackets implied by the existence
of a second-order variational principle.” (i) This method
yields necessary and sufficient conditions for the existence
and the uniqueness of a Lagrangian. These conditions can be
dealt with and have a geometrical content. (ii) It answers the
question: “Do the equations of motion determine the com-
mutation relations?”? (iii) It gives a procedure to construct
explicitly the Lagrangian(s) (if any). The purpose of the pre-
sent paper is to illustrate that latter point in the important
case of spherically symmetric potentials, with a special em-
phasis on the 1/r potential problem.

We prove that there always exist many s-equivalent La-
grangians for spherically symmetric potentials in more than
two dimensions (the two-dimensional case has been treated
in Ref. 2).

For example, consider (in n dimensions) the Lagrangian

L=T—-V4+yJ/r~ (1.1)
The kinetic energy is {we take the mass m = 1 throughout)

1 ... ( d)
T=—¢q (|- =—),
2qq dt

* Chercheur des Instituts Internationaux de Physique et de Chimie, found-
ed by E. Solvay.
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and the potential energy is a function only of radius r and
time #:

V=V(rt) where r=(g'q)""%
J is the magnitude of angular momentum:
= (P4 — (qgF]"
= [}g°¢' — 49Ngd — 99)1"> (1.2)

(Summation over repeated indices is understood.) The La-
grangian L yields equations equivalent to
Cid
g
However, only for dimension n = | (whenJ =0)orn = 2is
the term yJ /7 a total derivative for the constant ¥ #O0.

We also show that in three dimensions (n = 3) there are
as many equivalence classes of Lagrangians that lead to a
variational principle equivalent to (1.3) as arbitrary func-
tions of two variables. All the Lagrangians can be expressed
in terms of one curvilinear integral that involves the La-
grange parentheses of the coordinates and the velocities.
These parentheses are explicitly determined for any choice
of the above mentioned arbitrary function.

We also discuss some of the properties of the Lagran-
gians associated with (1.3). In particular, it is pointed out
that the introduction of a small anisotropy in the potential
singles out the usual one (L, = T — V'): When such an inter-
action is switched on, the equations derive from only one
variational principle, which reduces in a continuous manner
to the standard one in the limit of no anisotropic interaction.
In our opinion, however, the fact that the standard Lagran-
gian plays a privileged role does not mean that the other
Lagrangians might not be useful in the study of some classi-
cal questions.

We finally turn to the Kepler (or hydrogen atom) prob-
lem, for which we derive the quantum theory implied by the
specific Lagrangian (1.1). It is found that the spectrum of the
energy levels is different from the usual one. This result
clearly shows that, although L and L, are equivalent from
the classical viewpoint, they yield inequivalent quantum ef-
fects. Why the correct quantum theory should be based on
L, rather than L may be related to the fact that L, plays a

i

i = (1.3)
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privileged role, but the relationship is not at all clear.
All thisis done after a brief survey of the results of Ref. 2
(in Sec. II).

II. INVERSE PROBLEM OF THE CALCULUS OF
VARIATIONS: BASIC EQUATIONS

Consider a system of second order differential equa-
tions in normal form,

q'=fla41). (2.1)
Upon introducing n new variables, it can be cast in the first
order form

qi = uir i =fi(q’u)t )’ (22)
or, in more compact notation,
2t = fAz,r) (2.3)

with z* = (¢'u), f* =" f) A = 1,...,2n).
The following theorem was proved in Ref. 2:
Theorem: A necessary and sufficient condition for the
existence of a second order Lagrangian L (¢,9,! ) yielding
Euler-Lagrange equations equivalent to (2.1) is that the lin-
ear, algebraic-differential equations for the 2-form o, (z,¢),

(i} do =0, (2.4)
(ii) £,0 + 3,0 =0, (2.5)
(iii) o[ X, AX;] =0, (2.6)
{iv) deto#£0 2.7)

possess a solution. Here, the symbols d, £, and 9, are, re-
spectively, exterior differentiation, Lie differentiation along
the vector field /* tangent to the trajectories, and partial
differentiation with respect to ¢ (at constant z*). Also, the
vector fields X, are tangent to the #'-coordinate lines:
4

o’
{“‘vertical vectors”). For later convenience we deliberately
adopt here notations that do not fully reflect the well-known
invariance of the formalism under time-dependent transfor-
mations ¢’ = t, 2'* = z'*(z,¢ ). We also note that the second-
order problem is expressed in terms of given configuration
variables ¢' and not in the 2n-dimensional z#-space. This
explains why some of Egs. (2.4)-2.7) [Eq. (2.6) more precise-
ly] are only invariant under point transformations, i.e.,
transformations of the form ¢ = ¢"/(g,¢t), u'* = u’dq'"/dq’
(no velocities in the transformation law for the coordinates).
This is a major difference from the so-called “first-order”
problem, for which the condition (2.6) is absent (see, for ex-
ample, Refs. 2 and 4).

Equations (2.4)-{2.7) for o are easy to handle. Taken
separately, they all possess an infinity of solutions. However,
in more than one dimension, the differential equation (2.5) is
in general incompatible with the algebraic conditions (2.6}~
(2.7), and there is no Lagrangian for (2.1). This is because
(2.5) and (2.6) imply the algebraic conditions

X.

t

o[(£ +3,)"(X,AX)] =0 for m=0,12 (2.8)

on o. These constitute a system of linear, homogeneous
equations for the n(2n — 1) components o, the rank of
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which depends on the forces (through £/). In general, i.e., for
sufficiently arbitrary forces, this rank is equal to n(2n — 1).
Consequently, the only solution to (2.8) is ¢ = 0, which
clearly violates (2.7).

It is convenient to recast Egs. (2.4)—(2.7) for o into initial
value equations at an arbitrarily chosen time, say ¢ = 0.

&[(£ + )" X, AX,)]li—o =0 for m=0,12,,

2.9)
do =0, (2.10)
detd #0, (2.11)

and evolution equations
£,0+0d,0=0, with o{t=0)=g. (2.12)

These latter equations propagate the initial data without am-
biguity in a manner that maintains the constraints (2.9)-
(2.11) (at least locally), so that the number of independent
solutions to (2.4)—(2.7) is equal to the number of independent
solutions to the initial value problem.

The above theorem also sheds light on the uniqueness
aspect of the inverse problem. We call two Lagrangians L,
and L, trivially equivalent if

L, =alL, + %— (@ = const#0).

Each Lagrangian which is trivially equivalent to a given L,
will yield exactly the same equations of motion (except for
the overall factor a). In contrast, two Lagrangians are s-
equivalent (s for “solution”) if they yield equations of motion
which have the same set of solutions. Thus L of (1.1) is s-
equivalent to L, = T — ¥ but not trivially equivalent to it.
We say a given L, is essentially unique if the only Lagran-
gians s-equivalent to L), are trivially equivalent to it.

The following result was proved in Ref. 2:

Theorem: There is a one-to-one correspondence
between trivial equivalence classes of Lagrangians for (2.1)
and equivalence classes of solutions o, (2,2 ) of (2.4}-{2.7),
where two solutions of (2.4)—(2.7) are “equivalent” if and
only if 03, = a0y, (@ = const#0).

This theorem reduces the discussion of the uniqueness
aspect of the inverse problem to the simpler study of the
uniqueness of the solutions to the system (2.4)-(2.7)}—or,
equivalently, (2.9)-(2.11).

We note finally that the connection between the 2-
forms o and the Lagrangians is provided by

dL = £,a+d,a, (2.13)
where the 1-forms a obey
da=0¢ and aX;)=0. (2.14)

Once the 2-forms o are known, the Lagrangians can be ob-
tained by elementary integrations along paths in the z#-
space (see example below—we do not treat here global prob-
lems that might arise from the nontrivial topology of the z
-space, which is the tangent bundle to configuration space).
Formulas (2.13)—(2.14) identify o, as the coordinate-veloc-
ity Lagrange parentheses:

- )
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where the n by n matrices A and B are equal to
2
,=L g =0k L (2.16)
3¢’d4' aq'dqy’  0q’dq'
Note that A= — A7, B=B".
Results similar to those mentioned above have been

derived in the recent preprint® (which only considers time-
independent Lagrangians) and Ref. 6.

lil. VELOCITY-FREE FORCES DERIVABLE FROM A
POTENTIAL

Let us now specialize the previous general discussion to
the case when the forces (2.1} are velocity-free and derive
from a potential

=%,
dq

It is well known that, upon variation, the Lagrangian T — V'
reproduces the equations of motion (2.1}. Accordingly, the
only nontrivial part of the inverse problem of the calculus of
variations consists in its uniqueness aspect. We reformulate
it below as a standard problem of linear algebra for n X n
matrices, coupled to the differential problem (2.10).

As shown in Ref. 2, Eqgs. (2.8) withm =1and m =2
are, respectively, equivalent to B=B"and A =0. Asare-
sult, Eq. (2.5} reduces to

JB JB

BB o (3.2)
aq" du™
and states that the elements of the matrix B are all constants
of the motion (compare with Ref. 7; note that the “Hessian
matrix” B is equal to the unit matrix for the Lagrangian
T—V)

On the other hand, Eqs. (2.8} with m = 3 read

[B,D°] =0, (3.3)

where the symmetric matrix D° is given by?

V="VFigt). {3.1)

a,B+u™

PO »
dq’
{indices are lowered and raised with the Euclidean metric
8;)- All time derivatives of (3.3) vanish, and, using (3.2), we
get Eqs. (2.8) with m > 3. These equations are explicitly

[BD']1=0, /=12, (3.5)
where the matrices D’ are recursively defined by
ap/ an’ 8D’
DIt ="y —— 4 fm . 3.6
ot aq™ e u™ (3-6)

Again, we equivalently recast the equations for B into
initial value equations

[ﬁrf)l] = O) 1 = 031,21"" (3'7)
detB£0, (3.8)
3B, 9B,
—L % =, (3.9)
dq* dg’
3B, 3B

i * 0, - (3.10)
I+
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and evolution equations (3.2). Equations (3.9) and (3.10) are
just what become the closure conditions dé = Osince A = 0.

The above interesting way (3.7) of rewriting the algebra-
ic conditions (2.9)is due to Sarlet (who has also shown how to
extend it to the case of general forces).® It leaves us with well-
known equations of basic algebra, which simply state that
the matrix B commutes with all the elements of the Lie alge-
bra .7 (I)') generated by the symmetric matrices D' [i.e., the
smallest Lie subalgebra of & ¢(n,R ) that contains all D’.]
Indeed, from the Jacobi 1dent1ty for the commutators of ma-
trices, one easily infers [B, [D’,D™]] = Oand then B, D] =
for all Dew (D’ ). If the representation .o (D’) is 1rredu¢1ble
the matrix B must be a multiple of the identity, B = AL,
where 4 is a constant function of ¢', ¢’ by (3.9)(3.10)? (we
assume n > 2). The Lagrangian T — ¥is consequently essen-
tially unique {up to the trivial equivalence relation men-
tioned above).

If, however, the representation .« (D'} is reducible, the
general solution to the algebraic problem (3.7) is

B=Yi.M,, (3.11)
where the matrices M, (@3»2) constitute a complete set of
independent particular solutions to (3.7) and where the 4,
are arbitrary functions of ¢’ and ¢'. The closure relations (3.9)
then impose differential restrictions on these functions (see
below). Once the initial value problem is solved, the evolu-
tion equations (3.2) can be integrated and yield B at all times.

IV. ALGEBRAIC PART OF THE INITIAL VALUE
PROBLEM FOR SPHERICALLY SYMMETRIC
POTENTIALS

In this paragraph, Egs. {3.7) are solved in the case of
spherically symmetric potentials,

V="V(rt) with r=[gq]"2
From the equality

o k AP '
D‘k_éfi __(Z_) aq __Z_alk (4.1)
aq r r r
(where' is @ /3r), the first equation (3.7) for the matrix B reads
1 (V'Y g
- (_) [B’q ® q] = 09 (4'2)
r\r

where (q & q),; = ¢'g’.

When the dynamical system is a free particle or an iso-
tropic harmonic oscillator (with positive or negative spring
coefficient), this equation and the other equations of (3.7)
impose no restriction on B. The algebraic problem (3.7 is
thus trivial and we will assume from now on that ¥ #£br* + c.
In that case Eq. (4.2) is equivalent to

[B.qeq] =0. (4.3}
As one easily checks, the whole content of Eqs. (3.7) is that

the matrix B—which depends on both ¢’ and ¥ —must com-

mute with the four-dimensional algebra generated by g e q
andu®u.

In order to proceed further, we remove from R 2" all the
smgular points” (¢',4') where the n-dimensional vectors q
and «’ are linearly dependent. This is a set of measure zero. If
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the initial conditions do not belong to that set, the trajectory
will never hit it by the conservation of angular momentum.

The general solution to the above problem is given in
the remaining part of R " (i.e., in R **- { singular points}), by

Big,u) = 4 (g.4) + P(g,u)M(g,u)P(q,u), (4.4)
where M(g,u) is an arbitrary symmetric matrix and where
P(g,u) is the projection on the surface (of codimension 2)
orthogonal to both ¢’ and u":

Plgu)=1—J ?[gueu+u’qeq

—(ug)lgeu+usq) (4.5)

Here, u* = u'u’, ¢* = ¥ = ¢'¢q, and u-q = u'q". As in the be-
ginning of this paper we set

J?=u*q" — (u-g).

The projection P possesses the following properties:

P>=P, P=P7 (4.6)

P=I-J"2§ 4.7)
and annihilates the vectors ¢' and u"

P,g¢’=Pu’=0 (rank P=n—2). (4.8)

In (4.7), the antisymmetric matrix
S=u®q—gqou

is the ordinary angular momentum. In three dimensions,
S; =€pdy, Ji=

where J, is the vector usually referred to as the angular mo-
mentum; note that

5,8, = —uS?=2J2

The matrix B depends on 1 + 4(n — 2)(n — 1) arbitrary
functions, for only the projected part of M perpendicular to
the plane (q:,u‘) remains in (4.4). It is one of the remarkable
features of B that it is independent of the specific form of the
forces. This is, of course, a consequence of the force-indepen-
dent structure of Eqs. (4.3) and will have important implica-
tions to which we shall return.

When n = 2, the general solution (4.4) depends on only
one function since P = 0. Consequently, the Lagrangian for
the two-dimensional spherically symmetric problem is es-
sentially unique.

When n = 3, the general solution to (4.3) involves two
arbitrary functions. It can be rewritten as

Blg,u) = A (q,u)] + p(g.u)Plg,u), (4.9)

%eijk Sjk ’

where p(g,u) is an arbitrary function.

For higher dimensions, the general solution to (4.3) de-
pends on more arbitrary functions and is harder to handle.
We shall thus restrict our attention to the case » = 3, which
already presents interesting features.

V. DIFFERENTIAL PART OF THE INITIAL VALUE
PROBLEM (THREE DIMENSIONS)

With B given by (4.9), the conditions (3.9) and (3.10)
become first-order partial differential equations for A and p.
When the indices i, j, k all take different values, these equa-
tions only involve the function u. They read explicitly
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Tpu= —up, (5.1)
Rp=qp, (5.2)
where the vector fields 7; and R, are given by
T,=s,2, R=52. (5.3)
aq’ du’
The other equations in (3.9) and (3.10) are
a—/l_ =0, —611— =0 (5.4)
dq' Au'

[use has been made of (5.1) and (5.2) to simplify their form].
Their general solution is evidently

A=c, (5.5)

where ¢ is an arbitrary nonvanishing constant (so that
detB+#£0).

Let us now solve (5.1) and (5.2) for the unknown func-
tion u(g,u). This system only contains four independent
equations since the determinant of the odd-dimensional anti-
symmetric matrix S vanishes (/'S;, = 0; note also that J ‘u;

=0=J'g,). Itis a “complete” system, in the sense that no
new equation is obtained if one takes the brackets of (5.1),
(5.2) with (5.1, (5.2). This follows from the identities obeyed
by the Lie brackets of the vector fields 7; and R,

a
[7..T;] =ujTi—uiTj—25ijula—q,’ (5.6)
d a
T.,R,1=uR, +4.T, —S,N<u’—— ’———), 5.7
[ ;1 J 945 AW q EX (5.7)
d
[RnRj] = qiRj - qui + mqqlw ’ (5.8)
and from the equations
ul_a_ﬁl;=0=ql_a;i=0,
q o'
19p 191
U —— = —_— — N
EY dq' #

which are algebraic consequences of (5.1) and (5.2). To prove
that latter point, the following relations were found useful:
;S — ;S = U Sy (5.9)
98 — 4;Su = 4iSj- (5.10)
Let u,(¢,u) and u,(g,u) be two solutions of (5.1) and (5.2).
Then their quotient i ,/u, = v is a solution to the equations
Tv=0, Rv=0. (5.11)
Accordingly, the general solution to (5.1) and (5.2) is given by
u=pav, (5.12)
where /i is a particular solution and where v is the general
solution to Eq. (5.11). Since this latter system is complete, it
possesses two independent solutions (2 = dimension of the
space, 2 X 3, minus number of independent equations, 4).
It is easy to check that J ~! is a particular solution to
(5.1) and (5.2} and that
a, =J./J (5.13)

yields two independent solutions to the homogeneous sys-
tem (5.11) (only two because =, = 1). It then follows that
the general solution to (5.1) and (5.2) reads
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(5.14)

where g(a;,) is an arbitrary function of its arguments. This
completes the resolution of the initial value problem.

u=gla;)/J,

VI. THE BRACKETS [g’¢’] AND THE LAGRANGIANS
(THREE DIMENSIONS)

Since the matrix B only involves the components of the
angular momentum, which are all conserved quantities, the
general solution to (3.2) has no explicit time dependence and
is simply given by

B=B=1+ [gla,)/]]P (6.1)

The nonvanishing constant ¢ in (5.5) has been taken equal to
1. There is no loss of generality in so doing, since the Lagran-
gians are only determined up to an arbitrary multiplicative
constant (plus an arbitrary total time derivative).

The matrix inverse to B (i.e., the matrix of the Poisson
brackets [¢',¢7], reads explicitly

B—'=I——£(ﬂ—P (6.2)

J +gla;)

since P2 = P. It is well defined everywhere in R ?"- { singular
points} provided the function g(a,) obeys J + gla;)#0. Note
again that, although the forces do appear in the evolution
equations (3.2), the Lagrange parentheses (¢,,g;) = 0, (¢,,4;)
= B;, and (g;,g;) = 0 are independent of their specific na-
ture. Together with the fact that the projection P annihilates
the forces (P, f’ = 0, the forces are radial), this has the fol-
lowing interesting consequence: Let L [V'] be one of the La-
grangians for the spherically symmetric potential V (r,¢ ) and
L,[V] be the standard one (T — V).

Theorem: The difference AL = L [V'] — Lj[V]is inde-
pendent of the spherically symmetric potential ¥ (r,z), i.e.,
T—V+A4Lisa good Lagrangian for any other spherically
symmetric potential ¥ (r,t ).

Proof: Although it is obvious that Ao defined by

( 0 —(g/J )P)
Ao =
g/J)P 0
is independent of the form of ¥ (r), we must show that AL is.
From (2.13) and (2.14) we find
d{AL) = £/Aa) with dda=40c and aX;)= O,(6 3

where we have taken 4a to be explicitly independent of 7.
The components of £,(Aa) are [remember
S =, — 3V /34
; d
£/4a)], = (u‘—— Aa; ,a,»),

J

where we have used the fact that
i~ (da,)=f'| —=P,;|=0.
fiada) =1 8P,

Thusd(4L ) = £/{Aa)forany V' (r,t )andhenceT — V' + ALis
a good Lagrangian regardless of the form of ¥ (r,z).

This theorem shows that, in order to get all the Lagran-
gians for the spherically symmetric potential (in three di-
mensions), one simply has to solve the equations

dda = Ao, 4a(X,)=0, (6.4)
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and

ddL) = £,{(Aa) (6.5)
with f* = (',0). The second equation is easy to solve once Aa
is known:

AL (z#) = j (£,44a),d2".
¢

Here, the integral is taken along any path joining an arbitrar-
ily chosen fiducial point z§' to the point z#. In more explicit
terms, we have

AL(z) = f [u"(% Aa,-)dqf + Aa,.du‘]. (6.6)

We thus turn to the task of determining Aa from Egs.
(6.4). These equations read explicitly

aA.ali _ gla,) P, (6.7)
agq’ J

and
dda; _ dda; —o, (6.8)
dq’ g’

since 4a = (4a,,0).
The formal solution of (6.7) is

da, = J £ P,du + Clg) (6.9)
Because of Eqgs. (3.9) and (3.10), (6.8) implies
o
Clg) =22
dq
for some function ¢ (g). Finally, we find that
AL = u/Aa; (6.10)

directly satisfies (6.5) and therefore is the solution (6.6) up to
the possible addition of a constant.

The conclusion of this whole analysis is that the general
Lagrangian for nontrivial spherically symmetric potentials
(V #a + br?) involves, in three dimensions, an arbitrary
function of two variables. It is givenby 7' — V + AL, where
AL is obtained by one integration [(6.9), (6.10)]. It is to be
remarked that this Lagrangian is also a good one when the
forces are linear or in more than three dimensions, but it is
not the most general one in those cases.

VIH. INTRODUCTION OF AN ANISOTROPIC
INTERACTION

It has been argued in Ref. 2 that systems admitting
many inequivalent Lagrangians are rather peculiar. We shall
illustrate that general assertion by introducing an anisotro-
pic perturbation of the simplest type,

Virt)—>Virt)+ Bq’ (7.1)
and by showing that when the constant 8 does not vanish,
there is only one trivial equivalence class of Lagrangians (the
standard one).

The effect of the perturbation Bq’ is to change the first

component of the force by the amount — B. Accordingly,
the first algebraic equations for the matrix B read again
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[B.geq] =0. (7.2)
The matrix D is indeed unchanged and we assume
V #a + b2 (If V = a + br?, one must also add an anhar-
monic interaction yr*, for example, to single out the usual
equivalence class of Lagrangians.?) The next algebraic equa-
tions are

[Bueq+qeu] =0, (7.3)

from which one successively infers, using the Jacobi identity,
that

[B,S]=0 (7.4)
and
[B,u®u} =0. (7.5)

As in the spherically symmetric case, the matrix B must
commute with the algebra generated by ¢ ® q and u ® u. This
implies (4.9):

Big,u) = A (g, u)] + p{g,u)P(g,u). (7.6)

When £ #0, thisis not the end of the algebraic problem,
however. Equations (3.7) with />2 are equivalent to the addi-
tional condition

[ﬁ,A] =0,

where the matrix elements of A are A; = B(5,, ¢’ + 8,,¢).
Since P and A do not commute except on a set of measure
zero, the function g in (7.6) must vanish. The matrix B re-
duces to

Big.u) = A (qu)L, (7.7)

from which one infers, using (3.9) and (3.10) that A is con-
stant.” It then follows that the Lagrangians for the potentials
(7.1) are all given by the formula

a(T— V) (witha = const#0) (7.8)

up to a total time derivative.

Consequently, it is only for the special case of potentials
characterized by 8 = O that an ambiguity in the choice of the
Lagrangian arises. This indicates, at least in the case at hand,
that the existence of many equivalent Lagrangians results
more from mathematical simplifications than from physical
considerations.

VIIl. STUDY OF A PARTICULAR LAGRANGIAN

Although the Lagrangians T — ¥V + AL [g(a,)] are, as
we have just stressed, rather peculiar when g(a;)#0, it is
nevertheless interesting to study further some of their pro-
perties and, in particular, the kinds of quantum theory that
they lead to. To that end, we shall treat in detail the case g(e,)

=y = const > 0, for which the integration (6.9) is elemen-
tary. { The integrand of (6.9) is the derivative with respect to
u’ of (y/J) [u' — (u'q"/r*)¢'].} By a suitable choice of the
functions C,(qg), one gets

A .=l(uf—£qi ) 8.1
4= k] (8.1)

This implies that L is
L=T—V+yJ/r (8.2)

in agreement with (1.1},
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The transition to the Hamiltonian is made in the usual
way. Since the additional term yJ //* in (8.2) is homogeneous
of the first degree in the velocities, the Hamiltonian, as a
function of the coordinates and the velocities, is the same as
for the standard Lagrangian:

H=W’+ V() (8.3)
(but the Poisson brackets [¢’,u’] are different). In order to

express it in terms of the coordinates and the momenta, one
needs to invert explicitly the Legendre definition

= =+ (' — U 8.4
r= 77 ( quq) (8.4)
The result is
i Y i
u'=p, — L (p,? — qp.q), 8.5
P53 (p 9p:q) (8.5)
where J, is the Hamiltonian angular momentum
71( = Ekij(piqj)’ (8.6)
J={)"?=[pp.a'qd — (pqV]"> (8.7)

It is J, that generates infinitesimal rotations by the Poisson
bracket operation. It is related to J, by the relation

T =J (L +y/T), (8.8)
from which one deduces

With (8.5), the Hamiltonian becomes
H= 1p* +V—yJ/P+ /2~ (8.10)
To finish with the classical theory, we point out that we

could have derived the coordinate-velocity form (8.3) of the
Hamiltonian directly from the general equation

dH da,
g, [f=—+ , 8.11
wl" =0t 5 €11
which relates H, a,, and the forces for any system.? In our

particular case da,/dt vanishes, whereas only o, = (§ |

contributes in (8.11), since the forces are radial and accord-
ingly annihilated by the projection P. The same conclusion
holds even when the arbitrary function g(a;) on which o,
depends is not constant: the Hamiltonian, as a function of
the coordinates and the velocities, is given by (8.3) for all
Lagrangians that yield the dynamical equations (1.2). We
shall call (8.10) the unorthodox Hamiltonian.

IX. QUANTIZATION OF THE UNORTHODOX
HAMILTONIAN FOR THE HYDROGEN ATOM

When the potential is proportional to 1/7, the quantiza-
tion of (8.10) is straightforward. First of all, there is no order-
ing problem if one writes H as (8.10), since J and 7 commute.
Second of all, the additional terms — ¥J /7* and ¥*/27* do
not destroy the spherical symmetry so that one can simulta-
neously diagonalize H, J 2, and J,. Of course, these two pro-
perties are not peculiar to the 1/7-potential and hold for any
Vir).

As in the usual treatments, we write for the wavefunc-
tion ¥,

Ym0 ) = 1}’—’ Y760 ), 9.1)
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where the functions Y 7(6,¢ ) are the standard spherical har-
monics. Inserting (9.1) in the Schrédinger equation, we ob-
tain the hydrogen-atom radial equation for u(r) with /{{ 4 1)
replaced by

W4+ ) =270+ 1012+ P = (I + 1) =)
in the centrifugal term (this is the effect of the new terms).
Note that from (8.9}, the numbers
{[1(I + 1)]'2 — ¥}2 =1 (1 + 1)aretheeigenvaluesofthecoor-
dinate-velocity angular momentum J %. Here there is no rea-
son why 7 should be an integer, or why two different /’s
should differ by an integer, since y is an arbitrary real
number.

The spectrum of H is given by the Balmer formula with
the principal quantum number replaced by N 4/ + 1. Since
1is not an integer, the degeneracy peculiar to the Coulomb
potential is removed, which clearly indicates that H pos-
sesses a spectrum different from the usual one. This was to be
anticipated, since the commutation relations [¢',u’] are dif-
ferent from the standard case.

In view of the remarks made in Sec. VII, we should state
that we feel that the unorthodox H and its quantum theory
are not to be considered as physical. Much needs to be done
to make completely unambiguous the passage from a classi-
cal system to its quantized analog. The importance of the
present example is to underscore yet again that in a system
having several Lagrangians which are equivalent from the
classical point of view, criteria from without the system must
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be employed to determine the correct quantization
procedure.
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The simplest physical system to have a nontrivial intrinsic structure in Minkowski space-time is a
three-twistor particle. We investigate this structure and the two pictures of the particle as an
extended object in space-time and as a point in unitary space. We consider the effect of twistor
translations on the mass triangle defined by the partial center of mass points in space-time. Finally
we consider the connections between twistor rotations and spin and we establish the spin

deficiency formula.

PACS numbers: 03.30. + p, 11.30.Ly

1. INTRODUCTION

In Penrose’s theory of twistors, zero-mass objects are
assigned a fundamental role. The zero-mass particles are re-
presented (classically) by a single twistor while the massive
particles are represented by several twistors.' ™ The basic
idea of twistor particle theory is that the kinematic variables,
e.g., momentum and angular momentum, associated with
the massive particles can be expressed in terms of two or
more twistors. (This description is via the so-called kinemat-
ic twistor). On the other hand, the internal structure of the
particle does depend critically on the number of twistors
used in the description. (Frequently in twistor theory®™ lep-
tons are described by two-twistor systems while hadrons are
described by three-twistor systems.) The linear transforma-
tions among the two or three (or more) twistors which pre-
serve the kinematic twistor (or variables) are referred to as
internal symmetry transformations,” (IST). The two-twistor
particles have the simplest space-time description. They can
be thought of as either a real center of mass world-line with
an associated momentum and spin or as a complex center of
mass world-line.

Three-twistor particles are the simplest systems which
do possess an extended structure in complex Minkowski
space. A three-twistor particle with twistors X ¢, ¥ *,Z “ can
be thought of as being (in some sense) composed of the three
pairs (X %, Y ), (Y*,Z ), and (Z *.X *) of twistors® and thus it
would have a substructure of three two-twistor massive sub-
systems. These structures are, however, not disjoint since
any pair of them has a twistor in common. Furthermore, the
world-lines, masses, spins, etc., of the parts make up those of
the entire system. A point to be emphasized is that the sub-
systems and their kinematic properties are not invariant un-
der the IST.

The present work is an attempt to study the geometry of
this twistor decomposition of three-twistor systems. The two
main questions investigated are (a) what are the changes in
the subsystems caused by the action of the IST, and (b) what
is the relationship of the total system variables to those of the
related subsystem variables. For pedagogical reasons we

* Work supported by a National Science Foundation Cooperation Grant.
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have chosen a purely classical approach, most of the results
easily surviving quantization.

In Sec. 2 the general theory®™ of massive n-twistor par-
ticles is reviewed. At the center of the formalism lies the
kinematic twistor in terms of which the momentum, angular
momentum, and center of mass line of the particle are ex-
pressed. As mentioned before, the IST of the system leaves
the kinematic twistor invariant.

In Sec. 3 we specialize to three-twistor systems and
study the IST, which turns out to be the inhomogeneous
SU(3) group [ISU(3)]. Three spaces play a critical role here:
(1) twistor space T on which we choose three points Z

= (X% Y*Z% or, alternately, three copies of T, i.e.,

T x T X T;(2) complex Minkowski space which has the natu-
rally chosen triple of points x*,y°,z°, each being the intersec-
tions of the twistor pairs (Y %,Z %), (Z *,X “), and (X “, ¥ “); and
(3) unitary space, a three-complex-dimensional affine space
on which the elementary representation of the ISU(3) group
acts as the isometries. It can be viewed as the homogeneous
space ISU(3)/SU(3).

In Sec. 4 we investigate the translation subgroup of the
ISU(3) group and show that a translation along a given axis
in unitary space leaves the corresponding twistor unchanged
while shifting the other two in complex space-time along
their subsystem or partial center of mass line. We also find a
unique correspondence between the time development of the
system in Minkowski space and a special translation in uni-
tary space.

In Sec. 5 we study the SU(3) subgroup of ISU(3) and
show how from its generators we can find a unique ‘‘complex
internal center of mass” world line in unitary space. This is
in analogy with the use of the homogeneous Lorentz group
generators to find the center of mass.' We further discuss the
internal or unitary spin {which is analogous to the Pauli~
Lubanski vector) and show its relationship to the space-time
spin. Section 6 deals with the mass triangle defined by the
partial center of mass points, while Sec. 7 presents the spin
deficiency formula, i.e., the relationship between the total
spin and the constituent spins. According to this formula the
total spin is the sum of the massive subsystem spins minus
the spins of the three twistors.
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In the concluding sections we use the Penrose blob no-
tation® to facilitate lengthy algebraic computation. An intro-
duction to the blob notation is given in an Appendix.

2. THE TWISTOR CONSTITUENTS

Consider a massive particle in Minkowski space-time as
a

a system of n>»2 massless constituent twistors Z 7,,
i = 1,...,n. The particle has the kinematical twistor!

AP =27 IP"Z!, (2.1)

where I “? is the infinity twistor which breaks the conformal
invariance. The summation convention holds for Roman
twistor “flavor” indices (flavor indices share the property of
Greek twistor indices that they are raised and lowered by
complex conjugation, ( Z %) = ( Z©). Each term on the right
of Eq. (2.1) for a fixed value of i is the kinematical twistor of
one of the massless constituents.

The kinematical twistor is decomposed into the spinor
parts

— 2" py.
afl _
(4 ]_Lg, 0 ] (2.2)

Here u*2 is the total angular momentum spinor (symmetric
in its indices) and the Hermitian spinor p3, is the four-mo-
mentum. The center-of-mass line of the system consists of

the points of real Minkowski space-time
def , L ,
() = m~ At py + B ph) +m P, (23)
def
where m? = p4. p%'is the squared rest mass and the real

parameter 7 is the proper time. It does not appear to be possi-
ble to express the center of mass in terms of the kinematical
quantities in a manifestly twistor-invariant form, due to the
fact that the concept of the center of mass in not invariant

with respect to translations. However, using the constituent
twistors directly, one can define a center of mass point twis-

tor®

def —
R¥P=2m2Z*ZEM™*. (2.4)
The quantities
def
M,=Z*Z{1, {2.5)

are called mass amplitudes and for n > 2 are the partial mass
amplitudes of the two-component subsystem labeled by i and
k, and are such that the mass squared of the system may be
written as a sum of partial mass squares

m*=M, M*. (2.6)
The point twistor (2.4) decomposes according to
— L F*R P irg ]

—irg.

R = (2.7)

€45
where r**', the center of mass point, is a point of the complex
Minkowski space-time. The point 74*" lies on the complex
center of mass line of the system. The complex center of mass
line is the set of points'®

4 = )
+iS Y mT 4 Ap*tmTY, (2.8)
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where A is complex and S, ,- denotes the Pauli-Lubanski
spinor

Sia =Hlap Pi —Ban J AR (2.9)
In the rest frame of the particle defined by the form of the
four-momentum

1 1 0
[p]=— [ ] ,
v2 10 1
the Pauli-Lubanski spinor becomes proportional to the non-
relativistic spin. Thus the spinj,,. is given
(2.10)

The Pauli-Lubanski spinor is the sole nonvanishing
part of the spin twistor’

.
Jaar=m" Sy, .

S8 =}, A7+ 1m* &), (2.11)
according to
0 0
S8 = [ g 0] . (2.12)

The internal symmetry transformations of the kinema-
tical twistor are'’

Ze=UNZE+ A4 I®Z)),

(2.13)

Z,=UWZE+A" 1527,
where [ U ] is anXn unitary matrix and [4,,] is skew. The
transition Z ¢—Z ¢ amounts to selecting a new set of mass-
less constituents for which the kinematical twistor of the
system remains unchanged. Thus the kinematical variables
discussed remain unchanged under internal symmetry
transformations, with the exception of the center-of-mass
twistor. The center-of-mass point is defined directly in terms
of constituents and it has been shown by Hughston® that
internal transformations (2.13) move the complex center-of-
mass point over the entirety of the complex center-of-mass
line.

The central dogma of twistor particle theory asserts
that the state of the system at any instant of time is complete-
ly described by the values of the constituent twistors Z ¢ and
by their complex conjugates. The space of n-twistors
T X T X...X T admits a naturally defined symplectic form
idZ ‘,’37; In the sense of Hamiltonian dynamics Z ¢ and
Z !, together play the role of canonically conjugate variables.
Accordingly, any function of the form f(Z %,Z ) is called a
dynamical quantity.'?

We introduce the Poisson bracket of dynamical quanti-
ties f(Z,Z ) and g(Z,Z

PRS- )

8Z¢2 98z, 9Z!, 3Z¢
The Poisson bracket is antisymmetric in f and g and is real
when both fand g are real. From (2.14) we identify the gen-

eral coordinates ¢/, and canonically conjugate momenta p©
as follows:

(2.14)

@ =Z7, p,=iZ.. (2.15)
The twistor variables have the Poisson brackets
[Z2,z8]=0,[22Z5) = —iskés. (2.16)
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A transformation generated by a dynamical quantity f
is given
527 =[Z%f],
(2.17)
6Zi=[Z.f].
The unitary transformations Z % = U*
the functions

v=2Z5Z,, (2.18)
forming a Hermitian matrix, and the transformations Z &
=Z%+ A, I°Z 5 are generated by the mass amplitudes
M, =Z2Z%I,andM*=ZZk 1. (2.19)
The A transformations commute and are called internal
translations.

As long as we are concerned with a massive particle in
free motion, the decomposition into allowed twistor con-
stituents is immaterial for the motion of the particle. This
reflects the invariance of the kinematical twistor with re-
spect to the internal transformations (2.13). The idea is, how-
ever, that the behavior of the particle in interactions should
depend on the substructures present in a twistor decomposi-
tion.

The n-twistor particle where n>3, possesses massive
parts. Such a substructure consists of two or more null con-
stituents. Clearly, a two-twistor particle has no massive sub-
systems. The simplest place to study massive subsystems is a
three-twistor particle. In the next section we discuss some
features unique to three-twistor particles.

% are generated by

3. STRUCTURE OF THREE-TWISTOR PARTICLES

The internal structure of a massive particle described by
three-twistors can be examined in terms of the three two-
twistor subsystems obtained by considering the three twis-
tors pairwise. Each such two-twistor subsystem defines a
massive particle in space-time with well defined (real and
complex) center-of-mass line, spin, and center-of-mass
point. These physical properties of the subsystems combine
to yield the properties of the entire system in unexpected and
interesting ways, given an ordered triple of twistors
(Z%,Z%,Z5)eT. (It is sometimes preferable to think of the
triple as a pointin 7 X T X T.) Any one of these, Z §, has its
kinematical twistor, 4 2%, and any pair of these, (Z ¢,Z b
i <j, has its associated kinematical twistor 4 §¥. While a sin-
gle twistor describes a massless system in Minkowski space-
time, a pair of twistors describes a massive system. The inter-
nal symmetry transformations change the kinematical
twistors of the one- and two-twistor subsystems while the
kinematical twistor of the entire system is unchanged and, in

a

fact, this constrains the changes in 4 % and 4 ,-jB since

1
A“’3=—2—%:A35=ZA;’B=%:A§B—ZA;"B.
i<f
The internal states will be used in the description of
interactions and the manner in which the various concepts
are linked is of importance. To proceed further, the internal
symmetry group must be examined more closely. The inter-
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nal translations are generated by the partial mass ampli-
tudes, which can be given equivalently by

d'=1e"* M, andd, =} e, M*. (3.1)
The mass squared is easily given by m? = 2d'd; and is posi-
tive. The unitary transformations are generated by B
which satisfy

d,B.d*=0. (3.2)
Writing B as a trace-free part 4 | plus a trace results in

k=A4i +6 B, (3.3)

where B = { B . From (3.2), the trace may be written as

B=2m~%d, A d*. (3.4)
Thus the trace of the generators of the unitary transforma-
tions can be written in terms of the remaining 14 internal
symmetry generators and without loss of generality the uni-
tary transformations will be restricted to SU(3) in the re-
mainder of the paper.

Asin (3.1), introducing alternative translation param-
eters

t'=1e"Ay, (3.5)
the internal symmetry transformations take the form
Zr=UNZ5 — et T*Z), (3.6)

with U ¥ an element of SU(3) and # an element of C. This
transformation is represented by the pair ({,¢ ) and the group
product structure follows from the composition of two
successive transformations. Thus ({/,¢) followed by ({/',¢ ')
gives after a short calculation

(@) (U =0y t+ ¥t (3.7)
where U * is the Hermitian adjoint of {/. Equation (3.7) de-
fines the 14-parameter group denoted by ISU(3) and called
the inhomogeneous SU(3) group of internal symmetry trans-
formations (IST). This group acts on C* with coordinates z*,
i =1,2,3 as a group of point transformations where ({/,f)
gives

Zi=UiZ"+1%). (3.8)
That is to say, the ISU(3)} is realized as the isometry group on
C? of the Hermitian line element dz'dZ; and this gives C* the
structure'? of a unitary space, U >. An alternate point of view
is to consider U ? as the homogeneous space ISU(3)/SU(3).
We will give later yet another method of obtaining U>.

The transformations in (3.6) which act on 72 constitute
the twistor realization of ISU(3). The same elements of
ISU(3)act on U * via(3.8). We need not bother to compute the
generators of the ISU(3) group in the isometry representa-
tion since they are already available in the twistor realization
[cf. Eqgs. (2.18), (3.3), and (3.1)]

A,=Z3Z,-16,27Z,,
di=1e*Z:1,Z%, (3.9)
di=eu ZLI*Z}.
We identify the translation generators d ‘ and d, as the com-
ponents of the complex internal momentum of a particle in

the unitary space. The generators 4 {, of SU(3) rotations con-
stitute the total internal angular momentum of the particle.

Lukécs et al. 2110



Under a translation ' = z’ + ¢/, the total angular momen-
tum and B change as [cf. Eq. (3.7)]

Al =AY +d T+ 03 —yd"T, + 138, (3.10)
§=B+§(d‘7,+t’2,), (3.11)

and the complex momentum remains invariant. The behav-
ior of dynamical quantities with respect to SU(3) rotations is
implicit in our tensor notation.

For future use we wish to spell out the meaning of the
transformation (3.10); the A , are the generating functions of
the isometries in unitary space with the origin as a fixed point
while the 4 { are the generating functions of isometries keep-
ing the point z' = ¢ ' fixed. In this manner 4 ;, can be thought
of as a tensor field on unitary space with ¢ = z.

To summarize this section, there are three spaces which
play fundamental roles here. The first is twistor space 7 on
which we take three points (Z ¢,Z §,Z §) to specify our mas-
sive system. (An alternative and sometimes necessary point
of view would be to choose a twistor from each of three
different copies of T'). The IST, i.e., ISU(3), acts on these
three points preserving the kinematic twistor. Since pairs of
twistors define points of complex Minkowski space, the
three twistors define three points in complex Minkowski
space which are moved about by the IST. The third space is
the unitary space U * having the isometry group ISU(3). The
generators of ISU(3) define a vector field d * and tensor field
A} on the unitary space in a manner analogous to the way the
Lorentz group defines the momentum and angular momen-
tum fields on Minkowski space. In Sec. 5 we will show how
A} and d' define an internal center of mass line and internal
spin in analogy to the way angular momentum and momen-
tum determine a center of mass and spin.

4. INTERNAL TRANSLATIONS

We now explore the effect of internal translations on the
structure of the three-twistor particle. Consider first a trans-
lation

Z=z41t,

with ¢* = (0,0,4 ), by the complex amount A in the z* direc-
tion of the unitary space. In the twistor realization, Eq. (3.7),
the momentum parts of the constituent twistors [, where
Z? = (w? 7, )] remains unaffected,

Tigw =T, (4.1)
and

of = o + AT,

&3 = wf — AT, (4.2)

@3 = o3

We compare the change in the w parts with the effect of a
translation in Minkowski space-time

FA = XM g (4.3)
This latter gives

' =o' +iaT,, To=7,, (4.4)

for any twistor. Consider, in particular, the pair Z ¢ and Z ¢.
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Choose
a ' = AT 7 + 7, {4.5)
where A is complex. From Eqs. (4.4),
ot = wf +il7 7t T, ,
of = 0} + IAFUT 7oy,
or using (2.5),
& =of +iAM, 7,
(4.6)
@3 = w3 —iAM,, 7},
Choosing the parameter 4 to be
A= —iA/M,, 4.7)

we have the following result:

The special internal translation with (') = (0,0,4 ) shifts
the twistors Z § and Z § parallelly along the time-like center
of mass line of the massive two-twistor subsystem they repre-
sent and leaves the twistor Z § invariant. A similar result is
obtained for translations along the other two axes.

Consider next the space-time translation in the direc-
tion of the total four-momentum of the system

e =r(m ot + )+ g (4.8)
Is this possibly an internal translation? From Eqgs. (4.4) we
obtain

@t = of +irMy, 74+ M, 74,
ot = 0t + ir(M,, 7 + M,, 74, (4.9)
ot = 0t + ir(My, T4 + My, 4,

or, in matrix form using (3.1),

@ oy
ot = o
@3 w3
0 d> —d¥\[m
+ir| —d? 0 d' 74 |.(4.10)
d? —d! 0 1
This defines an internal translation with
(t) =ird"d*d?). (4.11)

What we have is a translation in the direction of the unitary
momentum d ‘ by the amount 7. The significance of this re-
sult lies in the fact that it establishes a map from the time
development of the system in space-time to the development
in unitary space parallel to the unitary momentum.

To conclude this section we observe that translations of
the form (4.11) exhaust the unitary translations which can be
pictured equivalently as space-time translations. The reason
for this is that space-time translations not along the centre-
of-mass line of the system alter the angular momentum.
However, the angular momentum is preserved by all internal
transformations since these preserve the kinematic twistor.

5. SPIN AND ROTATION

In addition to its Minkowski space structure (momen-
tum, mass, angular momentum, center of mass, etc.) a three-
twistor particle has an associated unitary space structure,
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namely a point (or origin) in unitary space and a complex
“internal center of mass” world-line also in unitary space
with a related internal spin tensor (which is the unitary space
analog of the Pauli-Lubanski spin vector).

To see the point structure we note that three-twistor
space has 24 real dimensions (3 X 4 X 2) while the kinematic
twistor A * has ten real components (momentum and angu-
lar momentum) and thus the kinematic subspace defined by
A “® constant is 14-real-dimensional. The equivalence classes
of points in this space (eight-dimensional) defined as those
points connected by SU(3) transformations, i.e., Z'¢

= U} Z7, Uje SU(3), can be identified with the points of
unitary space. The equivalence classes can be parametrized
by points in C* (six real dimensions) i.e., by the translations
ZP=Z7+A; 1% Z/,, from some arbitrarily chosen “ori-
gin” Z ¢,

(Note that by associating this arbitrarily chosen origin
with the group identity element, the kinematic subspace can
be considered as the ISU(3) group space. Note further that if
we had considered originally the group IU(3), the U(1) part
would have an action on the ISU(3) manifold which would
not be the action of an ISU(3) element. Nevertheless, locally
one could duplicate the U(1) action by an ISU(3) element.
This explains from a group theoretical point of view the rela-
tionship (3.4) between the U(1) generator and the ISU(3) gen-
erator).

In order to understand and see the internal center of
mass line and internal spin tensor we define

C;=A4;+1B8, (5.1)
and obtain from (3.10) and (3.11) the transformation law un-
der translations 2 = z' 4 t*

Ci=Ci+d't+1'd,. (5.2)
C; can be decomposed into the four parts

Ci=add +ad, +d'G - =S5, (5.3)

m

where

Sid=S!d=S5.=0,8,=S!,

ad,=d'a, =0, (5.4)

2 - . .
a:(iz Cidid, =28 ad=2Cld-ad,
m
S 2 =S
aj—?de,-—adj

(Note that the Hermitian adjoint is defined by S, = S%).
If we now insert (5.3) into (5.2) with

ti= —a'+ird' T, = _&‘.—ﬁ'ai, (5.5)
we obtain
Ci=la+ir—7)dd — =5, (5-:6)
m

Thus along the internal center of mass line defined by (5.5),
C; has only the first and last terms of its canonical decompo-
sition. The Hermitian tensor S| called the internal spin-ten-
sor can be explicitly solved for and written §;

= € €,,4(A ¢ + } BS:)d, d*. From its derivation or by di-
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rect calculation it is seen that it is (essentially) the invariant
part of C under translations, i.e.,

[Si.d'] =0, [Si.d]=0, (5.7)
and that it has a canonical decomposition
Si=SXX,-Y7,), (5.8)

with
SiXI=5X', S Yi= —SY', 550,
Xd =Y4d =0 XX =Y7=1.
The vector S* = (§)'/2X" contains all the information in S';.

From (5.4) and the first term in (5.6) we have
2

§=B+1’”T(r—7).

Up to the choice of origin B can be identified with the imagi-
nary part of 7. There exists a real line which is imbedded in
the complex line and parametrized by the real part of 7 de-
fined by B =0.

To reiterate the material of this section, we have shown
that a point in three-twistor space selects an origin in unitary
space. 4 }(Z) represent the eight generators of SU(3) rota-
tions about this point while &' are the generators of the three
complex translations. The tensor field 4 }(Z 7,¢) on the uni-
tary space represents the SU(3) generators about the point
z' =t*. Assuming that the three twistors Z ¢ are held fixed
(i.e., we have a given internal structure) then simply from the
algebraic structure of 4 ; and 4 ; one is led to the complex
line and internal spin-tensor. At the present we make no
attempt at a physical interpretation of the “origin”, the in-
ternal center of mass line, and internal spin tensor other than
to say that they are to represent the internal structure of the
three-twistor particle. A different choice of the three-twis-
tors obtained from the IST would represent a different parti-
cle having a different origin, world-line, and spin tensor but
with the same kinematic values. R

For a fixed numerical value of ¢/, 4 ; are SU(3) genera-
tors. This is true in particular on the center of mass world-
line. However an examination of {5.5) shows that z ‘isa fur}g-
tion of the Z % and Z !, and the functional dependence of A]
on the Z ®s is changed. From (5.7) we see that the S| gener-
ate transformations which keep the mass line fixed and by
direct calculation we have

[S;.S¥]=(d*d, —86¢d'd S| —(d'd, —8d'd)S}

(5.9)
which are the SU(2) Poisson brackets. When the transforma-
tions generated by S ; are referred to arbitrary three-twistor
systems, then they do not belong to ISU(3) since S| is not a
linear combination of the 4 ;’s and d "s. We can consider,
however, the restriction of these transformations to systems
with a fixed momentum d ‘ = D'. Then, S| are ISU(3) gener-
ators. We thus have a parallel, in unitary space, to space-time
spin as the generator of O(3) transformations. '

Theorem: The unitary spin S} generates the SU(2) sub-
group of ISU(3) leaving the mass amplitudes invariant. [cf.
Eq. (5.7)].

The mass amplitudes determine the scalar products of
the momentum parts 7, of constituent twistors by M,
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=7, mi . Hence the effect of transformations generated
by S is a rigid rotation of the momentum spinors 7, (to-
gether with the frame defined by any pair of them) about the
total four-momentum p* .. For systems with a fixed value of
the unitary momentum, d‘ =D { we may choose coordi-
nates D’ = (m/1/2) 8, . In this coordinate system, the uni-
tary spin has the component form, with J, real,

2 Ji+il, 0
[S;(]_——?mz J]—Uz _J3 0 .
0 0 0

Thus the Poisson brackets (5.9), restricted to systems with a
fixed momentum may be written

[Jads] = i€pe Jos @i, =1,2,3. (5.10)

It has been known for some time’ that the magnitudes
of the space-time spin and of the unitary spin are equal

ym S Sk= — 5,8 =Pm2, (5.11)
where we introduce the real parameter j which can take any
real value for a classical system (and it will take the values O,
1, 1, 3,-- after quantization). This common magnitude is a
Casimir invariant of both the Poincaré and of the inhomo-
geneous SU(3) groups, the second common Casimir invar-
iant being the mass square

diai =puu P = m*/2.

There is a further property that connects the space-time
spin and (the negative of) unitary spin: The projections of the
spin twistor (2.11) onto the constituent twistors are the nega-
tive of the components of the unitary spin

SgZPZk= —~Sk. (5.12)
This result (which can be proved by direct computation) gen-
eralizes a relation holding for two-twistor particle spins.’
For a two-twistor particle, however, the unitary spin is re-
placed by the conformally invariant quadratic expressions

Zeg, Zk, ik=i2,

where [ g% ] are the Pauli matrices.

6. THE MASS TRIANGLE

The subsystem of twistors Z § and Z  has the squared
rest mass

mi, =2M,M"7?=24%,.

The center of mass point twistor (2.4) of the subsystem may
be written

1
RY=—42725-252%). (6.1)
M 12
Using Eq. (6.1) and the center of mass twistors of the remain-
ing massive subsystems, we obtain the center of mass of the
three-twistor particle as the linear combination

Qa, 2 Y, a;
R E‘_‘?(MRM]ZR 15

+M; MP R+ My M R)). (6.2)

The nondiagonal spinor part of (6.2) which is linear in the
position vectors [cf. Eq. (2.7]] is
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P =mT i ml, A+ myy i +my ). (63)
Thus the center-of-mass point 74 of the particle is a weight-
ed mean of the partial center of masses. Hence the four mass
center points lie in a plane. The center of mass 7*4 is in the
barycenter of the triangle formed by the partial mass centers.
Note, however, that the weights are mass squares rather
than masses. We now compute the sides of the triangle.

The invariant distance of two complex points in Min-
kowski space-time

fllA' =xz11A' +ly;{A' ,

(6.4)

’.;A'=x424A'+iy,¢24A',

can be expressed in terms of the point twistors R ¥ and R §#

asS

— B ]
R‘IIBRZaB - _%Rllz eaB‘yé R;

= (" = Nria — i) (6.5)

The length of the imaginary part of vector 7" is
R aﬂl_{aﬁ =4y, (6.6)
The partial mass centers are null-separated in complex
Minkowski space-time since any pair of them lie on a com-
mon twistor. Let us, however, consider the real mass trian-
gle. From Eq. (6.5), the condition of null separation for the
arbitrary subsystems « and 4 is

~R¥Rop =(x—xP—(y—pP
@ 7 a £ “ /
+ 2i(x —)/f)-(y —,5) =0. {6.7)

Hence using Eq. (2.8), we can express the side ¢ connecting
the mass points = and # in terms of the spin vectors S 44’
= m**1 as
def
C=x—xP—(m8 —mS) (6.8)
a I a o« 44

It is quite surprising that the spin difference appears in a
side length of the mass triangle. From Eq. (6.8) we further
have that each side of the mass triangle is orthogonal to the
difference of the spins at the endpoints of the side.

To complete the analysis of the mass triangle, we now
ask how the lengths of the sides of the mass triangle depend
directly on the constituent twistors. A direct substitution
into Eq. (6.8) yields unwieldy results. Instead we consider the
variants of Eq. (6.7):

. _4
— R R =(x —xP —(y—yP — 2i(x ~ x}{y — ),
. 4 - “ @« £ e é

_ £
— R Ropg=(x—x)" —(p+ 1) +2ix —xHy+),
a « 4 a 7 « F e 4
— R Rop=(x —xf — (p+yF —2ix —xMy+),
4 PR = % - 4 e 4

(6.9)

Taking the sum, and adding the lengths of imaginary parts

(Eq. (6.6)],
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c=x—x)}
VA

_a _4

— _” — __.A
(R + R\, +Ra5)]~ (6.10)
“ /
For calculational convenience and to illustrate its useful-
ness, Penrose’s blob notation will be used to write the lengths
in terms of the constituent twistors (cf. Appendix). Let us
write

Zi=, Z5=, Z5= (6.11)
From Eq. (2 8), and a = (13), b = (23),
R¥®R., = gﬁﬁ , (6.12)
where the mass amplitudes are
— ﬂ b = U
M=o M - (6.13)

Proceeding with the evaluation of terms in Eq. (6.10) we
obtain the expressions for the sides of the mass triangle:

- ETav AL

Thus, typically, in tensor notation

2
2 _
V4 ZBIGB)(Z Z 1) z: Zy IM)(ZZ— I *)

X(Z5Z"1,)Z8' Z3(ZL, 22128 2
~(252Z\1,.,)24Z;Z217°Z},7Z%,Z¢)

)

where antisymmetrization in indices in the brackets is un-
derstood.

7. THE SPIN DEFICIENCY FORMULA

In this section we prove the spin deficiency theorem.
The content of this theorem is that joining three two-twistor
particles by identifying their constituents pairwise gives a
total spin which is the sum of the spins diminished by the
spins of the twistor constituents.

;c =S§2k +S;3k +S§1k —S'ik —S;k =S8y . (1.1)
Equation (2.1) takes the form for a two-twistor particle
in the blob notation: @ =B+ B . Inserting this in

(6.14) the spin twistor (2.1) written in terms of blobs as

7 _ 1 ,

b —annug:H zéz % +mz/2‘, (7.2)

= .

23 O 08 and using the identity®
1
— 1 — gL u}
I—RU{UQ—g+um+ug—n 15 -4 7.3
we obtain

ze =(8—:)(L9f‘b—um+zglr:7;+22% (7.4)

We now compute the spin of a three-twistor particle similarly. Inserting the rest-mass square
(7.5)

nt = Ller + Ddeg + [Hey,

~j—=

and the kinematical twistor
w=0+0+ 0.

in Eq. (7.2), we have

9 (BB x @00+

U+‘U+U)|'

'R X

Using a judicious amount of identities of the form (7.3) for various subsystems, we obtain for the spin of the three-twistor

>§+<3‘3’:>Lri (7.7)

particle
b - 3-3-4) 5+ (-0
+ogS+ s ad Ui
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When we compare this expression with the spin twistors of the massive subsystems [cf. Eq. (7.4)] and with the spin

twistors

bt g-hiH g3t

(7.8)

of the zero-mass constituents, we obtain the spin definiency formula in the blob notation

b b+ b-0-0-0

APPENDIX: THE BLOB NOTATION

The blob notation of abstract tensor systems was first
introduced by Penrose.® Its advantages over the more con-
ventional formalisms of Ricci, Levi—Civita, and Einstein are
probably best understood in terms of the physiology of hu-
man perception.

A tensor is drawn in the diagrammatic notation as a
blob with arms and legs depicting the upper and lower in-
dices a b

ab __
Tcde -

Cde

The outer product of tensors 7' .5¢ and U, is the juxtaposi-
tion of blobs

T2 U, # ;\k

To contract a pair of indices, one connects the corresponding
arm and leg,

TEUp= I8

A Kronecker symbol § % is represented by a line seg-
ment

& =1.
b £

The notation converts identities of the kind U7/, 8, = U7,
into trivials partitions of some index line.

Symmetrization and skewing in like indices is denoted
according to the scheme

H=11+ X
H=11-X

The dimension n of the tensor system is given by the loop

n=5a"=o.
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(7.9)

In twistor theory one is interested in dimension n = 4.
Taking twistor complex conjugates is an involution that has
the effect of turning the symbols upside down. Thus the
blobs of twistors Z ¢, Z§, Z £, and of their complex conju-
gates are drawn

=) g=4 #=|

hoE=t 2=

2l

The skew unit twistor and the infinity twistor are denoted,
respectively,

e = ) and I**= .

It is useful in computations to keep in mind some of their
algebraic properties in the blob notation such as

U =i tm=0 U= fun

'Our notation is in agreement with R. Penrose and M. A. H. MacCallum,
Phys. Rep. 6C, 241 (1973).

2R. Penrose, Int. J. Theor. Phys. 1, 61 {1968).

3K. P. Tod and Z. Perjés, Gen. Rel. Grav. 7, 903 {1976).

‘K. P. Tod, Reps. Math. Phys. 11, 339 (1977).
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Trace identities arising in the scattering theory of one-dimensional matrix Schrédinger operators
are deduced. They derive from the properties of an asymptotic expansion of the trace of the
resolvent kernel in inverse powers of the spectral parameter. Applications of these trace identities
for characterizing infinite families of conservation laws for nonlinear evolution equations are

given.
PACS numbers: 03.65.Nk, 02.30.Tr
1. INTRODUCTION

One of the most important properties of the nonlinear
equations which are integrable by means of the inverse scat-
tering transform method is the existence of an infinite family
of local conservation laws. A natural explanation of this fact,
for the case of the Korteweg—de Vries equation, was pro-
vided by Faddeev and Zakharov' by using the trace identi-
ties arising in the scattering transform theory for the Schro-
dinger equation. Shortly thereafter trace identities for other
spectral problems were applied to the analysis of important
nonlinear wave equations as, for instance, the nonlinear
Schrodinger equation? and the sine-Gordon equation.® The
interest in trace identities is not only motivated by their con-
nection with conservation laws; they are also a fundamental
step in arriving at a description of completely integrable
equations in terms of systems of action-angle variables. This
latter application of trace identities is particularly relevant in
the semiclassical quantization of completely integrable wave
equations*® as well as in the quantum inverse scattering
transform method.®

In this paper we derive the trace identities associated
with general matrix Schrodinger spectral problems. The in-
verse scattering transform theory for Hermitian matrix
Schrodinger operators was analyzed by Wadati and Kamijo’
who also indicated explicit examples of Lax pair equations.
On the basis of this theory, Calogero and Degasperis® de-
duced a wide class of nonlinear evolution equations for
which the scattering data evolve in a simple form. However,
as already observed by Wadati and Kamijo, several of the
more important evolution equations appear to be related to
non-Hermitian matrix Schrodinger operators, for which a
general inverse scattering transform theory has not yet been
formulated.

The starting point of our derivation of trace identities is
the asymptotic expansion of the trace of the resolvent opera-
tor. This expansion can be obtained in two different ways:
firstly, by using the algebraic properties of the diagonal of
the resolvent kernel in the context of symbolic calculus of
differential operators,” and, secondly, by means of the ana-
lytic properties of the trace of the resolvent as a function of
the spectral parameter. The first procedure provides an
asymptotic expansion in which the coefficients appear as
functionals with polynomial densities depending on the ma-
trix elements of the potential and their derivatives. By the
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second procedure these coefficients can be expressed in
terms of scattering data and this leads us to the trace identi-
ties. The paper is organized as follows.

Section 2 deals with the main properties of the Jost solu-
tions and the resolvent kernel for matrix Schrédinger opera-
tors. Several of these properties, those included in Theorems
1 and 2, are listed without proof since they derive easily from
methods which are similar to the ones used in the scalar
case.'®!! We do, however, provide a detailed proof of Propo-
sition 1 of Sec. 2 since it leads to the characterization of
bound states as zeros of the determinant of the Wronskian of
two matrix Jost solutions. Section 3 is concerned with the
derivation of the trace identities. In Part A a recursion rela-
tion is given which enables us to calculate explicitly the coef-
ficients H, of the asymptotic expansion for the trace of the
resolvent operator. In Part B of Sec. 3 we use the analyticity
properties of the trace of the resolvent in order to get the
expressions of the coefficients H,, in terms of scattering data.
Finally, Sec. 4 includes the application of the trace identities
to obtain infinite sets of conservation laws for several rel-
evant families of integrable nonlinear evolution equations.

2. MATRIX SCHRODINGER SPECTRAL PROBLEMS
A. Notation and basic properties

We will be concerned with the N X N matrix Schro-
dinger operator

L= -3, +Vix),
where V (x)is a complex N X N matrix function, non-Hermi-
tian in general, satisfying'”

— w0 <X < 0, (2.1)

fw (1 4+ x3)|V (x)| dx < co. (2.2)

Here and below we denote |M | = max, 3, |M,, | for a given
matrix M. The operator L acts on vector functions with NV
components, but in studying its spectral properties it proves
useful to consider the following two eigenvalue problems:

— 3, F+ V(x)F=k?F, (2.3a)

— 3. .F+FV(x)=k7F, (2.3b)

where both F and F are assumed to be N X N matrix  func-
tions. We define the Jost solutions F, of (2.3a)and F, of
(2.3b) as those matrix functions verifying the integral equa-
tions
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-
F (k)= e* 1 — f W V(F, (ky)dy,
i (2.4a)
— _ T ginkix — ) —
F. (kx)=e* ™1 —f WFI (ky)V () dy,
(2.4b)

where 1 is the N X identity matrix. These integral equa-
tions can be analyzed by means of the well-known method of
successive approximations.'®'" In order to describe the re-
sults which are derived from this method we introduce the
two subsets

C* = {keC:Im k >0}, C* = (keC:Im k>0}. (2.5)

One proves the following theorem.

Theorem 1: The Jost solutions F , (k,x), F . (k,x) exist
for all keC™* and, as functions of k, are analytic on C* and
continuous on C*. Moreover, they satisfy the bounds'?

eT F, kx)| =1+ 01/ k), |k|—w,  (26)
where F + denotes either F or F 4

Given two solutions Fand F of (2.3a) and (2.3b), respec-
tively, the Wronskian

[F,F1=F(@,.F)—(3,F)F (2.7)

isindependent of x. This property leads at once to the follow-
ing relations, valid for all nonzero real k:

F (kx)=F_(—kx)4(k)+F_(kx)B(k), (2.8)
F_(kx)=F,(— kx)Clk)+ F, (kx)D k), (2.9)
F, (kx)=C(k)F_(—kx)—D(—k)F_(kx), (2.10)
F_ (kx)=Ak)F,(—kx)—B(—k)F, (kx), (2.11)
where 4, B, C, D are the matrices defined by

A (k)= (172ik [F_(k $F, (k)],

Clk)= — (1/2ik)[F, (k ;F_(k )], (2.12)
Bk)= —(1/2ik)[F_(— k \F . (k)],
D(k)=(1/2k)[F,(—k),F_(k)]. (2.13)

The compatibility of the relations (2.8)~(2.11) implies the
constraints

C(—k)d(k)+Dk)B k)

=A(—Kk)Clk)+B(k)Dk)=1, (2.14a)
D(—k)d(k)+ Ck)B(k)
~B(—Kk)Clk)+A(k)D(k)=0. (2.14b)

The matrices A (k ) and C (k) are specially important for our
subsequent discussion on the trace identities. Their defini-
tion as given in (2.12) can be extended to Im k > 0, and the
properties of the Jost solutions together with the analysis of
the integral equations (2.4) imply

Theorem 2: The matrix functions A (k Jand C (k )areana-
lytic on C* and continuous on C* — {0}. Moreover, they
satisfy

(k) —1] =0(1/[k|),

|k | 0.

ICk)—1|=0(1/[k]),
(2.15)

As we shall see later, det 4 (k) = det C(k ), but at this
point of our exposition it is convenient to content ourselves
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with the following partial result.

Proposition 1: The functionsdet A (k Jand det C (k ) have
the same set of zeros in C* — {0}.

Proof: Suppose we have k,cC* — {0} such that
det 4 (k,) = 0. Then there will be a nonzero vector such that
A (kola = 0. According to (2.12) this implies that

F_(kox)3,@ (x) = (0, F_(kox)) (x), (2.16)

where @(x)=F (ky,x)a. Due to the asymptotic behavior of
F_asx— — o, the matrix F_(k,,x) will be invertible for all
x in some interval { — o0 ,7). Therefore (2.16), considered as a
first-order differential equation for ¢(x), has N linearly inde-
pendent solutions defined on ( — oo ,7). But since the Wrons-
kian [F_(k,);F_ (ko)} vanishes, each column of F_(ky,x) is a
solution of (2.16). In addition, these columns are linearly
independent for all x in some interval { — «,7’). Hence, for
all x in the interval { — oo ,min(r,#’)) the general solution of
{2.16) is a linear combination of the columns of F_(k,,x). As
a consequence a nonzero vector b exists verifying

F. (kox)a = F_{ko,x)b. (2.17)

Note that this equation must hold for all xeR since F_ {k,x)a
and F_ (k,,x)b are solutions of (L — k *)¢ = 0, and then, if
they coincide on an interval they coincide also on the whole
line — o <x < . Now, if we use the definition of C (k) as
given in (2.12) we have

Clkolb = — (1/2iko)[F , (ko)iF ., (Ko)la = 0. (2.18)

That is to say, det C (k,) = O. In a similar fashion, one proves
that each zeroof det C (k )isalsoazeroofdet 4 (k). Q.E.D.
Henceforth we will denote

Z = {keC* — {0}:det 4 (k) =det C(k)=0]. (2.19)

Obviously, from (2.17) it follows that each keZnC* deter-
mines an exponentially decreasing eigenfunction

F_ (k,x)a = F_(k,x)b of the matrix Schrddinger operator L,
and then k 2 is a proper eigenvalue of L. However, we notice
that if the potential matrix ¥ (x)is non-Hermitian then the set
Z may have elements with Im £ = 0 and these do not corre-
spond to bound states of L.

From the point of view of scattering theory, the Jost
solutions F__ and F_ describe waves incident from the left
and the right, respectively. In this way, taking into account
the relations (2.8) and (2.9) we deduce that the transmission
and reflection coefficients are given by

Tk)y=Ck)™', Rk)=D(k)Ctk)™", (2.20)
in the case of right incidence, and by
Tk)=A(k)™, Rk)=Bk)A(K)", (2.21)

for the left-incidence case. Moreover, by Egs. (2.14) one rea-
dily finds the following relations:

T(—k)=(1—R(—kRK&)T k)",
Rik)= —Tk)R(—Kk)T(—k)".

(2.22a)
(2.22b)

B. The resolvent kernel

The resolvent operator of L is an integral operator act-
ing on N-component functions and its kernel admits the fol-
lowing representation in terms of the Jost solutions of (2.3a)
and (2.3b):
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(/2 )F (kx)4 (k)" F_(ky), x>p,

(i/2k \F_(kx)C (k)™ 'F (ky). x<p

R (kx,p) = { .
(2.23)

In order to justify this fact let us prove
Lemma I: Given keC* — (Zu{0}) and xR, then the

matrix functions _
Fx) = (1/2ik \(F,.(kx)4 (k )~ 'F_{kxo)

— F_(kx)C (k)™ 'F, (kX)) (2.24a)
and
Fx) = (i/2k )(F . (k,xo) (k) ~"F_(k.x)
~ F_(kx)C (k)™ 'F, (k.x)) (2.24b)

are solutions of (2.3a) and (2.3b), respectively, verifying
Flxo) =Flxg)=0, (8, F)xo) = (8, F)xo) = 1. (2.25)

Proof: Consider the function F (x); clearly it is a solution
of (2.3a) and it verifies the Wronskian relations

[F.(k);F]=F,(kx), (2.262)
[F_(k);F]=F_(kx,) (2.26b)

If we think of (2.26a) as a first-order differential equation for
F it is easy to conclude that F must be of the form

F(x) = F (kx)M + Fylk,x), (2.27)

where M is some constant matrix and F, stands for the solu-
tion of (2.3a) satisfying the boundary conditions (2.25). Now,
if (2.27) is inserted into (2.26b) and the Wronskian [F_;F]is
evaluated at x = x,, it follows at once that M = 0. Therefore
F = F, and the enunciated property for F is proved. The
proof of the statement for F is completely similar. Q.E.D.

As aconsequence of this lemma, it follows that R (k,x,y)
verifies the equations

— duR (kxy) + (V(x) — k*)R (k,x,p) = 8(x — y),
(2.28)

— d R (kp.x) + R (kyx)(V (x) — k%) = 8(x — y).
(2.29)

Now, from the properties of the Jost solutions it can be seen
that for keC* — Z the function R (k,x,y) decreases exponen-
tially as (x,p) goes to infinity. Hence (2.28) and (2.29) mean
that the integral operator determined by the kernel R (k,x,y)
is abounded two-sided inverse operator of (L — k 2) provided
that keC* — Z. Furthermore, it is clear that, as a function of
k, R (k,x,p) is analytic on C* — Z and continuous on

C* — (Zu{0}). All these properties imply at once that

R (k,x,p) is the kernel of the resolvent operator of L.

In a recent paper'* Ragnisco has given an expression for
the kernel of the resolvent operator which contains some
trivial misprints: the resolvent kernel R ~(x,y,k ) should
change sign, and it is analytically continuable in the upper
(not lower) half k-plane.

3. DERIVATION OF THE TRACE IDENTITIES
A. The trace of the resolvent operator

As it has been shown by Gel’fand and Dikii,” the diag-
onal of the resolvent kernel of a differential operator is an
interesting algebraic object. In the case of the matrix Schro-
dinger operator (2.1) we have that according to (2.23) the
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restriction of R (k,x,y) to the diagonal x = y is given by the
matrix function
R (kx) = (i/2k \F (kx)A (k )~ "F_(k.x)

= (i/2k \F_(k,x)C (k)™ 'F (k,x). (3.1)
Observe that the equality between both expressions for
R (k,x) is a consequence of Lemma 1. Following the method
of Gel’fand-Diki based on the symbolic calculus of differen-
tial operators one proves™'® the existence of an asymptotic
expansion of R (k,x) for |k |—w;

R(k,x):# S R,k ">, Ry=1, (32)
n=0

where the coefficients R, (n>1) are polynomials, without
constant term, depending on the potential V (x) and its de-
rivatives. The explicit form of these coefficients can be calcu-
lated by taking into account the expression (3.1} for R (k,x)as
a product of solutions of (2.3a) and (2.3b). Indeed, one readily
finds that (2.3a) and (2.3b) imply

LyR (kx)= k23, R (k,x), (3.3)
where L, is the operator defined by

LVRE%(—axxxR_i_ax{Vv’R}+{V;axR}

_[V,"

+ o

[V.R 1{x) dx’D, (3.4)
and | , } denotes the anticommutator operation for matri-
ces. Insertion of (3.2) into (3.3) leads to the recursion relation

R, ,=L,R,, Ry=1, (3.5)

which allows us to calculate the coefficients R,,. For exam-
ple, one obtains

Ry={V, Ry= — |V, — 3V,
Ry =4V — S(V ) + 5V + 10V3). (3.6)

We define the trace of the resolvent operator of L as the
following integral:

Jjwtr(R (kx) — —217 ]l) dx, (3.7)

where tr( ) denotes the trace operation of matrices. The anal-
ysis of the integral equations (2.4) shows that for Im &k > O the
Jost solutions verify the asymptotic behavior'®

F.kx) ~ A(k)le™, F_(kx) ~ C(k)e~*,
) (3.8a)

— — o0

~ Ak)e*,

F. (kx) ~ Clk)e™, F_(kx)
B (3.8b)

> —~ o0

Then by (3.1) we have that the integral (3.7) converges for
keC* — Z. Now, substitution of (3.2) into (3.7) yields the
asymptotic expansion

(3.9)

where the coefficients H, [ V'] are the functionals depending
on V given by
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H,[V]= J‘_w trR, (x) dx. (3.10)

The above mentioned properties of the coefficients R, imply
that the densities of the functionals H, are polynomials de-
pending on the matrix elements of the potential ¥ and their
derivatives with respect to x. For instance, the first few func-
tionals are

H,[V]:%f tr Vdx, HZ[V]=—:—J tr V2 dx,

H3[V]=3—52f tr(V2 + 273 dx. (3.11)

B. Trace identities

We are going to obtain another expression for the
asymptotic expansion (3.9). Our derivation is based on the
following identity:

Proposition 2: For all keC* — Z it is verified that

= 1 Ak
f tr(R (k,x)—;]l) dx = 1 9cdetd k)
v 2% 2k detd(k)

1 ddet Cik)

2k detCik)
(3.12)

Proof: Given two solutions F and F of (2.3a) and (2.3b),
respectively, we have the identity

O, [F(k )0 F(k)] = — 2kF (k)F (k).
Thus, from (3.1) and (3.13) we get
tr R(k,x) = — (i/4k )3, tr[A (k)™ "F_(kx);d, F (k)]

= — (i/4k 3, tr[C (k)™ "F, (k,x);d, F_(kx)]-
(3.14)

In this way, taking into account the asymptotic behavior
(3.8) of the Jost solutions for Im k > 0, one finds

fjwtr(R (kx) — i ]l) dx

- _ 2_1k tr(d (k) '3, A (k)

(3.13)

- _z_lktr(C(k)—lakC(k )- (3.15)
Therefore, by using the matrix identity

ddet M (k) =det M (k) tr(M (k)" '3, M(k)), (3.16)

the result follows. Q.E.D.

Now, we are ready to improve the statement given in
Proposition 1.

Proposition 3:det 4 (k) = det C (k) forall keC* — {0}.

Proof: From (3.12) we have that

ak(detA (k)) -0,

det C(k)
for all keC™* — Z. Because of the analyticity of det 4 (k) on
the open set C* the zeros of det 4 (k) on C* are isolated
points and then C* — Z is an open connected set. Hence, by
(3.17) and due to the fact that
det 4 (k)
k|~ det C (k)

(3.17)

=1, (3.18)
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we deduce that det A4 (k) and det C (k) coincide on C* — Z.

Moreover, since both functions are continuous on

C* — {0}, they coincide also on C* — {0}. QED.
Becausedet 4 (k }—1as |k |— oo there willbesomer> 0

suchthatdet 4 (k )isnever Oon thesimple connected open set

C,m={keC™:|k | > r}.Consequently,det 4 (k )hasananalyt-

ic logarithm on C,* and Eq. (3.12) may be rewritten as

fjwtr(R (kx) — 3’; 1) dx

- —%ﬁln[detA(k)], keC* . (3.19)
At this point we make the assumption that no zero of

det A4 (k) lies on the real axis. This is satisfied automatically
when the potential ¥ (x) is Hermitian, but it is not assured in
the general case. From this assumption and the properties of
det 4 (k) we deduce that Z is a finite set

{k:1=1,...m} CC™. Moreover, if we denote by n, the or-
der of the zero k; (1 = 1,...,m), it follows that the function

flk)=[det 4 (k)] H( + & ) (3.20)
k—k,

is analytic on C™*, continuous and never 0 on C+ — {0}, and
flk)—1as |k |—oo. Hence, f(k ) admits a logarithm branch
which is analytic on C*, continuous on C* — {0}, and such
that In f{k )—0 as |k |—co. In this way, according to the
Beckenbach’s generalization of Cauchy’s Integral
theorem,!” we have

Inflk)= § Inf ‘Z) dz, Imk>0, (3.21)
27i

where ¥ is the contour consisting of a semicircle of radius 7 in
the upper half-plane, plus the real axis from —rto + r,
except the origin which is avoided along a semicircle of radi-
us €. Now, because In f(z)— 0 as |z|— oo the large semicircle
does not contribute to the integral (3.21) in the limit 7— oo.
On the other hand, it can be proved'® that |4 (k }| <const/|k |
as k— 0. Then f(k ) can become infinite when k— O no faster
than k¥ ¥, and it implies that the contribution of the small
semicircle to the integral (3.21) vanishes as e— 0. Therefore
it follows that

In fik) = f /9 4o 1mkso.
2mi) _w g—k

Here f signifies that the Cauchy principal value of the inte-
gral must be taken at ¢ = 0. Analogously, by integrating
along a similar contour in the lower half-plane, we find

i) _w q—k

Now, by adding (3.22) and (3.23),
/@S~ g, 1m0

1 o
k)= 2 j(/ qg—k

Then, by using (3.20), we deduce that for keC*,

k+k\™
In[det4 (k)] = — !
n[det 4 (k )] Zln(k_kl)

(3.22)

(3.23)

(3.24)

1 (% In[det(4 (g)4 (— g))]
g I > dg.(3.25)
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This expression leads to the asymptotic expansion

ank%n-rl

2n+1%

P& 4
In[det4 (k)] = —
nfdet 4 (k)] 2k,,=o[

1 = 2n _ 2
+?£ K In[det(d (g)4 ( q))]dq}k . (3.26)

In addition, from Proposition 3 and the relations (2.22) we
have
det(4 (g)4 (—g)) = [det(L —R (@R (—g)]™". (3.27)

Therefore, by substituting (3.9) and (3.26) into (3.19), we get
that the coefficients of the asymptotic expansion of the trace
of the resolvent operator may be expressed in terms of scat-
tering data in the following form:
2n—1

27

H,(V]=23nki' -
1

XJL ¢*" " ?In[det(l — R(g)R(—q))1dg, n>1.

o (3.28)
These relations are the trace identities for matrix Schro-
dinger operators. Observe that the existence of the integrals
appearing in (3.28) requires that R (g) must decrease rapidly
as |g|— 0. This asymptotic behavior for R (g) is assured by
assuming that the potential V (x) is infinitely differentiable
and along with its derivatives decreases rapidly at infinity.'®

4. CONSERVATION LAWS FOR NONLINEAR
EVOLUTION EQUATIONS

By means of the trace identities {3.30) we can derive ina
unified way infinite families of conservation laws for several
of the most important nonlinear evolution equations solv-
able by the inverse scattering transform method. To see this,
let us consider the Calogero—Degasperis equations® for
N X N matrix functions V' (x,t );

. V=2BLt)V, +a,L)[0,,V]+B,L)Go,, (4.1)

where the notation conventions are as in Ref. 8. It was
proved by Calogero and Degasperis that the evolution law of
the scattering data of the matrix Schrodinger equation under
the flows (4.1) is such that the eigenvalues remain invariant
and the reflection coefficient for right incidence evolves in
time according to

Rkt)= exp[4ik J(:dt "Bol — 4k %t ’)]
Xexp[ta,( — 4k?) + 2ikB,(— 4k o, ]
X R (k,Q)exp[H{ — a,(— 4k?)
+ 2ikB,( — 4k )0, ] (4.2)
Thus, we find that
R (k,t)R(— k,t) = exp[ta,( — 4k?) + 2ikB,( — 4k *))o, ]
X R (k,0)R ( — k,0)exp[ — t{e,( — 4k ?)
+ 2ikB,( — 4k *))o, ], (4.3)
and then we deduce
det(l — R (k)R (— k1))
=det(1 — R (k,0)R { — £,0)). (4.4)

Therefore, from the trace identities (3.28) it is obvious that
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the functionals H, [ V'] are conserved under the evolution
equations (4.1). We emphasize that the equations (4.1), for
which our result applies, contain the time-dependent term
Zﬂo(é ’t ) Vx "

The class of evolution equations (4.1) includes,*® among
others, the KdV equation, the modified KdV equation, the
nonlinear Schrédinger equation, and the sine-Gordon equa-
tion. In this way, from the functionals H, [ V'] we can get
conservation laws for such equations by means of appropri-
ate choices of the matrix function V. For example

(1) Modified Korteweg—de Vries equation:

2
—q qx
qt = qxxx + 6qqu’ V: ( 2) * (45)
— 4 —9q
(2) Nonlinear Schrodinger equation:
-9 Y
"ﬁ = _wxx_2|l/}|2¢’ V=( .
' -yt =¥
(4.6)
(3) Sine-Gordon equation:
- lui - 1u)cx
u,, =sinu, V=( * : 2). 4.7)
%uxx - I}ux

In order to understand the relationship among these
sets of conservations laws and the ones already known for
these equations, let us consider the generalized Zakharov—
Shabat spectral problem

0
@, — O+ iko)p =0, Qfx)= ( o) qg‘)) . (48)

and its Jost solutions ¥(k,x) and ¥(k,x), verifying the condi-
tions

(i((:)l;kx ) = (e it

alk e~ _ N _,
( —bik )e"kx) LT e (o)e -
Now, by defining V' = Q% + Q, it follows that

(4.10)

—axx + V_kzz(_ax _Q+’k03)(ax _Q+lk03)'

{4.11)
This implies that the Jost function F (k,x) of the 2 X 2 ma-
trix Schrodinger problem with potential ¥V = Q% + @, isgiv-
en by

F (kx) = (¥ — kx) Ylkx)); (4.12)

hence, the corresponding matrix 4 (k) is
_f(a(—k) O

A(k)_( 0 a(k))' (4.13)

Therefore, by (3.9), (3.19), and (4.13) it follows that
i - 2 —2n

Engl Hn [Q + Qx]k

1 gl —

=~ di[lnalk)+ Ina(—k)). (4.14)

On the other hand, it is known?’ that the conservation laws
for the evolution equations solvable by the inverse scattering
transform associated with (4.8) are the coefficients of two
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asymptotic expansions for the logarithms of a(k ) and a(k ) of
the form

Inatk)= — 3 C,[Qlk ", Imk>0,  (4.15a)
n=1
Inatk)= 3 C,[Q1k " Imk<O. (4.15b)
As a result we find
H,[Q*+Q,]=22n—1)C,,_,[Q]. (4.16)

That is to say, the conservation laws H, [Q* + Q, ] pro-
vided by the trace relations (3.28) are members of the known
families of conservation laws for the evolution equations as-
sociated with the generalized Zakharov-Shabat spectral
problems.

Another interesting nonlinear equation for which the
functionals H, [ ¥ ] determine an infinite set of conservation
laws is the m-component nonlinear Schrodinger equation

0 = = 0utle =23 s/ a@=1lowm.
g=1
(4.17)

As it has been observed by Wadati,?? if we define the
{m + 1) X (m + 1) matrices

1 0--0 0 Yy(x)-1,, (x)
0 Yix)
I= Po=Laxm [ Ulx) = : O ’
0 ¥ (x)
(4.18)

then, under the evolution law associated with (4.17), the ma-
trix Schrodinger operator

L=—-08_+Vix), V=-U>+JU, 4.19)
evolves according to the Lax pair equation
d,L=1[BL]), B=2Jd, —2U3d, —iJV. {4.20)

From (4.20) it is clear that the eigenvalues of L are constants
of the motion. Furthermore, it is easy to realize that the
reflection coefficient for right incidence associated with L
evolves in time in the following form:
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R (k,t) = exp( — 2ik 2J )R (k,O)exp(2ik 2tJ).  (4.21)

This implies that det(1 — R (k,?)R ( — k,t)) is time indepen-
dent. Therefore, by virtue of the trace identities (3.28), we
have that the functionals H, [ — U? + JU, ] are conserva-
tion laws for the evolution equation (4.17).
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symmetric profiles

George L. Johnston
Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Received 9 March 1982; accepted for publication 30 June 1982)

Use of the harmonic oscillator equation as the comparison equation in the application of Langer’s
method to bound states of the Helmholtz equation, w” + k 3g(z)w(z) = 0, with symmetric profiles
k } g(z), produces the WKB eigenvalue condition, which asserts the equality of the phase integral
of the original equation between the turning points to (n + 1/2)r. In the case of weakly bound

states, this condition gives eigenvalue estimates of low accuracy. Use of the Helmholtz equation

with the symmetric Epstein profile, G (x) = [E + Ug(cosh ax)~?], as the comparison equation
provides the basis for a convenient method to obtain eigenvalue estimates of substantially
increased accuracy in the case of weakly bound states. In addition to the usual condition of
equality of the phase integrals of the original and comparison equations between the turning
points, the conditions & 5g(0) = G (0) and k g( ) = G (oo ) are imposed. An eigenvalue condition
which is a simple generalization of the usual WKB eigenvalue condition is obtained. Its
application to selected diverse examples of the Helmholtz equation indicates that it has a broad

range of utility.

PACS numbers: 03.65.8q, 03.65.Ge

I. INTRODUCTION
We consider the one-dimensional Helmholtz equation,

w" + k 3glzjw(z) = 0, (1)
in the interval — o <z < . The profile k 2g{z) is character-
ized by the symmetric curve of Fig. 1. It is positive at z = 0.
It decreases monotonically away from z = 0 and approaches
a finite negative limit as |z|— . Thus it has two turning
points. The profile k 2g(z) depends on a parameter, which we
do not denote explicitly. The functional dependence of the
profile on the parameter is arbitrary. The Schréodinger equa-
tion is thus considered here a special case of the Helmholtz
equation. For a discrete set of values of the parameter, the
eigenvalues, the equation has solutions, the eigenfunctions
or bound states, which approach zero as |z]—» « . We consid-
er weakly bound states. Accordingly, we have the condition
k2g(0)Z — k2g(0). We are interested in obtaining esti-
mates of eigenvalues which are more accurate than those
provided by the usual WKB eigenvalue condition. This con-
dition, which can be obtained by Langer’s method, using the
Schrddinger equation for the harmonic oscillator as the
comparison equation, gives eigenvalue estimates of low ac-
curacy in the case of weakly bound states.

In Sec. I we derive Langer’s transformation. In Sec. I11
we present the usual Langer’s method treatment of the prob-
lem of bound states with two turning points, using the har-
monic oscillator equation as the comparison equation. We
examine in detail the reason why the resulting eigenvalue
condition gives eigenvalue estimates of low accuracy in the
case of weakly bound states. In Sec. IV we present a parallel
development, using the symmetric Epstein equation, an ex-
ample of the Helmholtz equation in which the profile is
G (x) = [E + Uy{cosh ax)~7], as the comparison equation.
Note that the parametric dependence of this equation is not
completely determined, as it is in the case of the harmonic
oscillator equation, by the usual condition of equality of the
phase integrals of the original and comparison equations
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between the turning points. We argue that the optimal dispo-
sition of the additional parametric dependence is achieved
by imposing the additional conditions k 3g(0) = G (0) and
k%g{oo) = G{). This choice leads to an eigenvalue condi-
tion which is a simple generalization of the usual WKB ei-
genvalue condition. It asserts the equality of the phase inte-
gral of the original equation between the turning points, not
to(n + 1/2)m, asin the WKB eigenvalue condition, but to an
algebraic function of k 2g(0) and k 2g{ ). In Sec. V we exa-
mine the utility of our eigenvalue condition by applying it to
selected diverse examples of the Helmholtz equation. In or-
der to provide a rigorous test, we examine ground states. We
find that our eigenvalue condition yields eigenvalue esti-
mates of substantially increased accuracy, relative to WKB
eigenvalue estimates, for the Helmholtz equation with a
wide range of dependences of k 2g(z) on z and the eigenvalue.

Il. LANGER’S TRANSFORMATION

Following Langer,' we first express w(z) in the form

w(z) = ulz[x(z)}, (2)
where u(z), v(x), and x(z) are functions which are to be deter-
mined; v(x) is a new dependent variable and x(z) is a new
independent variable. Introducing (2) into (1), we obtain the

differential equation
2

ux’ a7 + (ux” + 2u'x’) v + (4" + kiguvix) =0.
dx? dx
| (3)

2
kog(z)

v 0 N

FIG. 1. Characteristic curve of k 3g(z) arising from symmetric profiles
which correspond to weakly bound eigenstates.
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Equating to zero the coefficient of dv/dx, we obtain

ux" + 2u'x' =0, (4)
which, upon integration, yields
u(z) = Nx' '/, (5)

where / is an undetermined normalization constant. Divid-
ing (3) by ux’?, we obtain the equation

d% kig u"

dx® + ( x"? + ux'? )u(x) =0 ©)

The term u”/ux'? in (6) presents a serious obstacle to
further progress in obtaining convenient approximate solu-
tions of (1). The lowest order approximation is obtained by
neglecting this unwanted term. In the Appendix we investi-
gate the conditions under which neglect of the unwanted
term is justified.

We equate the quantity & 2g(z)/x"* to G (x), the profile
function in the equation

d%

dx®
which is referred to as the comparison equation. It satisfies
the following requirements. First, it must be similar to the
original equation, (1). This is an imprecise requirement, but
itis central to our program. In general, the comparison equa-
tion is required to have the same structure of turning points
and singularities as the original equation. The symmetric
Epstein equation clearly satisfies this requirement in the pre-
sent case. The harmonic oscillator equation satisfies this re-
quirement for strongly bound states. The divergence
between the profiles of the original and comparison equa-
tions at large values of the independent variables has a negli-
gible effect on the analysis. For weakly bound states, on the
other hand, the divergence is significant. Accordingly, for
such states the harmonic oscillator equation does not satisfy
the requirement that it be similar to the original equation.
The second requirement is that the comparison equation
must be analytically solvable. The third requirement is that
the phase integral of the comparison equation must be inte-
grablein closed form. The second and third requirements are
satisfied by both comparison equations.

The transformations of independent variables, which is
expressed as the functional relation x = x(z), is determined
from the relation between k 2 g(z)/x'* and G (x) which we have
imposed. We write it as a differential equation:

G (xx* = k 3glz). (8)
Extracting the square root of this equation and integrating,

we obtain the functional relation x = x{z) implicitly, as the
equality of two definite integrals,

+ G (x)v(x) =0, (7)

[ 16€n e = [ (kg1 s )

integrating from corresponding reference points x, and z,.
For the problem at hand it is convenient to choose x, = 0
and z, = 0 as the reference points. The transformation of
independent variables must provide that the turning points
of the original and comparison equations correspond to each
other. Thus we require that
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j B [G(;)]'/ng=f‘ [k3gis)]'"ds, (10

X

wherez . andx , aretheright- and left-hand turning points
of the original and transformed equations, respectively.

. HARMONIC OSCILLATOR COMPARISON
EQUATION

The standard treatment of the problem of two turning
points> is based on the use of the harmonic oscillator equa-
tion, in which

Gx)=E — Ux?, (11)

as the comparison equation. The eigenvalues of this equation
are given by*

E, =U,""1+2n), (n=0,1,2,) (12)

In this case, the condition stated in (10) becomes

fh [k 3gls)]"/*ds = J [Up"2(1 + 2n) — Ups] ax. (13)

X

The value of the integral on the right-hand side of (13) is
(n + 1/2)7. Thus we obtain the eigenvalue condition

Jz* [k3g(s)]%ds = (n+ 1/2)m. (14)

This is the same as WKB eigenvalue condition.’ Note that

the parameteric dependence of the comparison equation in
this case is completely determined by the requirement that

the phase integrals of the original and comparison equations
between the turning points be equal to each other.

We can now see in detail the reason why the eigenvalue
condition (14) gives eigenvalue estimates of low accuracy in
the case of weakly bound states. The phase integrals of
k 2g(z) and G (x) contain substantial contributions from
ranges of the independent variables in which the behavior of
the two profiles deviate significantly from each other. In the
case of strongly bound states, on the other hand, ranges of
the independent variables in which the behavior of & 3g(z)
and G (x) deviate significantly from each other lie outside the
range of integration.

IV. SYMMETRIC EPSTEIN COMPARISON EQUATION

A class of examples of the Helmholtz equation which
are analytically solvable in terms of solutions of the hyper-
geometric equation was applied to ionospheric radio waves
by Epstein® and to quantum mechanics by Eckart.” The sym-
metric Epstein equation has the profile

G (x) = [E + Ujcosh ax)~2]. (15)
For weakly bound states, this equation is similar to the origi-

nal equation. The harmonic oscillator equation is not. The
eigenvalue condition for the symmetric Epstein equation is®

E= — o[ —(142n)+ (1 + 4Ua"H"?P?, (16)
where 7 takes nonnegative integral values starting from zero.
There is a finite number of levels, determined by the condi-
tion

2n<(1+4U, )2 — 1, (17)

The phase integral between the turning points of the

George L. Johnston 2123



comparison equation is

f " [E + Uyfcosh ax)~?]"2dx

' [U = (—E) 7. (18)

In contrast to the parametric dependence of the harmonic
oscillator equation, that of the symmetric Epstein equation
is not completely determined by the condition of equality of
the phase integrals of the original and comparison equations
between the turning points. Thus we must impose additional
conditions in order to obtain an eigenvalue condition. The
phase integral condition is unique. The choice of additional
conditions is more arbitrary. In making it, we are guided by
considerations of simplicity and plausibility. We choose to
impose the conditions that U, and E be equal to the corre-
sponding quantities of the original equation, i.e.,

Us = k 38(0) — k §g(wo)=4 (K 38), (19)
and
E=G(ow)=kig(w). (20)

We eliminate the remaining quantity in (18), namely «, by
means of (16), making use of {19) and (20) to express it in
terms of 4 (k 2g) and k 2g(« ). Note that there is no simple
and plausible way to choose a. Thus the conditions that we
have imposed in order to obtain an eigenvalue condition are
the appropriate ones. The following expressions for « as a
function of U, and E are obtained from (16) for n = 0 and
n#0, respectively:

ay =(— Eo) VU, — (E,)], (21)

_21+2n)—E,)'"
Gnt0 = T ¥ 207 — 1)

[Uo_(‘En)][(l +2n)2_ 1] }1/2 B 1]

(22)

The eigenvalue condition is thus given by the relation

.f[%wn”m=vaAwmx@wnr‘
‘ X{[4(k2g)]"* — [ — kigl)]"?}.
23)

This condition is a simple generalization of the WKB eigen-
value condition, (14). In the case of the ground state, n = 0,
the eigenvalue condition has a particularly simple form,
namely

fh [kag(s)]" %ds = 7r{

[ —kiglw)]'"? ]
[4(k38)]" + [ — k3gle)]"
(24)
In the case of strongly bound ground states,
{[ —k3glo)]/4 (k3g)}—1 and the quantity in curly
bracketsin (24) approaches 1/2, in agreement with the WK B
eigenvalue condition. In the case of strongly bound higher
states, the right-hand side of the eigenvalue condition {23)
approaches (n + 1/2)r, in agreement with the WKB eigen-
value condition.
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V. NUMERICAL EXAMPLES

In order to examine the utility of the eigenvalue condi-
tion which we have obtained, we apply it to selected diverse
examples of the Helmholtz equation. In order to provide a
rigorous test, we examine ground states. Since the scale
lengths of higher states are smaller relative to that of the
profile, we expect that the eigenvalue estimates for them will
be more accurate. The results which we obtain indicate that
our eigenvalue condition yields eigenvalue estimates which
are of substantially increased accuracy, relative to WKB ei-
genvalue estimates, for the Helmholtz equation with a wide
range of dependences of k 3g(z) on z and the eigenvalue.

The first equation which we consider is the Schrédinger
equation with a Gaussian potential:

kiglz) = E + Vexp( — 2°). (25)

The second equation is the Schrédinger equation with a po-
tential whose magnitude is the square of a Lorentzian:

kigle)=E + V(1 +2°)77 (26)
These equations provide an indication of the applicability of
our eigenvalue condition to equations in which the asympto-
tic behavior of k 5 g(z) as |z|— o is different from that of G (x)

as |x|— 0. Since the asymptotic behavior of the difference
[G{x) — G ()] is exponential, namely, as x—

[G(x) — E1~4Uuexp( — 2ax), (27)
the equations considered provide an appropriate indication.
In the case of the Gaussian potential, the asymptotic behav-
ior is

[k3g(z) — E ] ~ Voexp( — 29). (28)
In the case of the squared Lorentzian potential, the asympto-
tic behavior is algebraic:

[k3glz) — E]~Vez™*. (29)

Note that parameters multiplying the independent variables
in the potentials of these equations can be scaled away in the
eigenvalue condition, so that the particular equations consi-
dered do not embody restrictions on their generality with
respect to such parameters.

The other equations which we consider are examples of
the Helmholtz equation in which

kiglz)=E + Voexp(sy —E — 2%, (s= + 1), (30a,b)

kiglze)=E+ Viexpl — (1 —sV~E)?’], (5= 1),
(31a,b)

Note that the dependence of k 2g(z) on z of (30) and (31) is the
same as that of (25). Considered together, these four equa-
tions provide an indication of the applicability of our eigen-
value condition to equations with a wide range of depen-
dences of k 3g(z) on the eigenvalue. We consider E = k jg( )
to be the effective eigenvalue. In (30), [k 3g(0) — k38(<0)]
increases (decreases) with increasing ( — £) for s = 1
{s= — 1).In(31), the width of [ k 3g(z) — k 3g(0)] increases
(decreases) with increasing ( — E)fors = 1(s = — 1). In(30)
and (31), we choose [k }g(z) — k 3g(o0)] to be functions of
Vv — E , instead of — E. Thereby we produce stronger varia-
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tions of [k 3g(z) — k 3g(c0)] with respect to — E for small
values of — E, which will occur in the numerical examples,
and more severe tests of our eigenvalue condition.

In order to provide a simple and uniform basis for eval-
uating the accuracy of the estimates provided by our eigen-
value condition, in each case we choose the value of V,, for
which the ground state eigenvalue estimate given by the
WKB eigenvalue condition is zero. For the examples of
k 2glz) chosen, there is in each case a bound ground state
corresponding to this value of V. Thus the relative error
produced by the WKB eigenvalue condition in each case is
equal to — 1. The choice of a squared Lorentzian instead of
a Lorentzian has been made in (26) in order to ensure the
existence of the phase integral for E = 0.

The numerical integration of the phase integrals pre-
sents a particular difficulty. In the neighborhood of a turning
point at z = z,, the dominant behavior of the integrand is
proportional to (z — z,)'/2. The first derivative of the inte-
grand increases in magnitude without limit as z—z,. A con-
venient technique for the numerical evaluation of the phase
integrals involves the introduction of a simple transforma-
tion of the variable of integration which removes the singu-
larity in the derivative of the integrand. For the class of inte-
grands considered here on the interval 0<z<z_, a suitable
transformation is

2t) =z, [3r — %], (0<t<1). (32)

With the introduction of this transformation, the phase inte-
grals between the turning points can be expressed in the form

I= 3z+f (k3glzr)]} /(1 — 1% (33)

In the neighborhood of r = 1, the dominant behavior of
(k 2g)'/% is given by

{koglzt))} P — 32, k582, )] AL —0).  (34)
Use of the transformation (32) results in a dramatic improve-
ment in the accuracy of the numerical integration of the
phase integrals.

The numerical integration of the differential equations
to determine the exact eigenvalues is performed using a
fourth-order Runge-Kutta approximation.

The numerical results are shown in Table I. For each
differential equation, the value of ¥, the exact value of — E,

— E,, the approximate value of — E obtained from our ei-
genvalue condition, — E, and the relative error of — E,
[A(—E)(—E)]=[—E,)/(— E,)— 1], are presented in
succeeding columns. Recall that the relative error produced
by the WKB eigenvalue conditionis — 1 because the values
of ¥, have been selected to give zero WKB ground state
eigenvalue.

The relative error produced by our eigenvalue condi-
tion is very small in each case. The sign of the relative error is
the same for all equations except the equation with the
squared Lorentzian potential. Presumably, this behaviorisa
consequence of the fact that in all the other equations
[k 2glz) — k }g(e0)] is a Gaussian in z. Considered together,
the six equations suggest that our eigenvalue condition
yields eigenvalue estimates of substantially increased accu-
racy, relative to WKB eigenvalue estimates, for the Helm-
holtz equation with a wide range of dependences of k 3 g(z) on
z and the eigenvalue.
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APPENDIX: NEGLIGIBILITY OF UNWANTED TERM

In Sec. II we neglected the unwanted term in (6),
u"/ux'?, in order to permit the development of the lowest
order approximation to the solution of (1). Here we examine
the unwanted term in detail and attempt to understand the
conditions under which its neglect can be justified.

The explicit form of u(z) is

/4

ulz) =Nli[2i(€ﬂ] . (Al)
koglz)

An explicit statement of the condition for the negligibility of

the unwanted term is

”

u

uk 3g(z) (42

The condition which is typically invoked to justify the
satisfaction of the inequality (A2)is that the ratio of the scale
length on which the solution of (1) varies to the scale length
on which the profile varies is small compared to unity or is

TABLEI. Numerical results. Entries in (a) designate equations in the text. Corresponding to each equation, (b) gives the value of ¥;,, (c) the exact value of — E,
(d) the approximate value of — E given by our eigenvalue condition, and (e) the relative error, [( — E,)/( — E,) — 1]. For each equation, the value of ¥, is
chosen so that the WK B eigenvalue condition gives a ground state at E = 0. Thus, the relative error produced by the WKB eigenvalue condition in each case is

equalto — 1.

(a) (b) (© (d) (e)

Equation V, —E, - E, [A{—E}Y(—E)]

(25) (1/8)r 0.080 100 3 0.081 536 4 0.017 9280

(26) 174 0.028 924 1 0.028 5590 —0.0126252

(30a) (1/8) 0.152 063 0.157 108 00331721

(30b) (1/8)r 0.053 936 6 0.054 5201 0.010816 1

(31a) (1/8)r 0.068 058 4 0.068 881 8 0.012098 3

(31b) (1/8)r 0.102 742 0.105 456 0.026420 1
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less than or approximately equal to unity, depending on the
situation considered. We shall find that the ratio can be per-
mitted to exceed unity in some cases.

The role played by this ratio in determining the negligi-
bility of the unwanted term is particularly clear in the case of
the WKB approximation, which can be obtained from
Langer’s transformation by using a comparison equation in
which G (x) is a constant. In that case ¥(x) is the WKB swell-
ing factor and

w s [Kg@l’ 1 [kl
4 [k3g2)]”
If the scale length of g(z) is x, ', so that |g'(z)| ~«,|g(z)| and
Ig” (z)] ~«3 |g(z)|, the condition (A2) implies that x5 <k 3. If

g(z) is of order unity, k ; ' is the scale length of the solution of

(1).

If G (x) is not a constant, the situation is considerably
more complicated and explicit results can be obtained only
in particular circumstances. For example, in a study of the
computation of the reflection and transmission coefficients
for a family of symmetric profiles, using a comparison equa-
tion in which

G(x)=x*+1, (A4)
where 7 is a constant, Bafios® includes a detailed considera-

tion of the unwanted term associated with an original equa-
tion which is a symmetric Epstein equation with profile

klglz) = k jtanh*(z/24 ), (AS)

in which case = 0. He develops a two-term expansion in
powers of x? for the unwanted term:

u"/ux? =a — Bx* + -, (A6)
with coefficients
a=(1/16m)A/A), B={(3/1287%)A,/ ), (A7)
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where A, = 27/k,. Examining the coefficients of the expan-
sion, he concludes that a necessary and sufficient criterion
for the applicability of Langer’s method in this case is
A/A>1.

It is impossible to perform a similar analysis in the case
considered here. We are dealing with an eigenvalue problem
and we use a more complicated comparison equation. Fur-
thermore, the condition k 2g(0) = 0, which makes an explicit
calculation possible in that case, is a very special one which is
not available to us. We can, however, develop a fairly specific
intuitive understanding of the situation by considering (A1).
Note that u is proportional to the one-fourth power of the
ratio of profiles and hence that  varies weakly with devia-
tions of the ratio from its value of unity at z = 0 and in the
limit as |z|— o0 . For states which are sufficient weakly
bound, the scale length of the state may exceed that of the
profile. If the profile of the comparison equation is sufficient-
ly similar to that of the original equation, the eigenvalue
condition may nevertheless give an eigenvalue estimate of
high accuracy. Unfortunately, it is a practical impossibility
to ascertain this on an a priori basis.
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?S. C. Miller, Jr., and R. H. Good, Jr., Phys. Rev. 91, 174 (1953).

*A. Baifios, Jr., J. Math. Phys. 14, 963 (1973).
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stein, see R. A. Phinney, Rev. Geophys. Space Sci. 8, 517 (1970).

C. Eckart, Phys. Rev. 35, 1303 (1930).

L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Addison-Wesley,
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The formal solutions of certain three-dimensional inverse scattering problems presented in papers
I-III in this series [J. Math. Phys. 10, 1819 (1969); 17, 1175 (1976); 21, 2648 (1980)] are employed
here to obtain quantitative estimates on the error resulting from the use of the Born
approximations in both direct and inverse potential scattering problems. These estimates are
uniformly valid at all energies, and for all sufficiently weak potentials.

PACS numbers: 03.80. +r

1. INTRODUCTION

It is known that the first Born approximation for the
direct problem of potential scattering also provides, when
suitably interpreted, a first approximation for the associated
inverse problem. We consider here the question of just how
good an approximation this is for both the direct and the
inverse problems of potential scattering in three dimensions.
We give quantitative estimates of the errors involved in this
approximation in terms of familiar norms on the data. These
estimates are derived from results of our previous work.!

2. THE DIRECT PROBLEM

The scattering of a quantum mechanical wave function
@(x, k) from a fixed potential ¥ (x) in three dimensions is
governed by the time-independent Schodinger equation

(V2 + k2%)p (x, k) = V(x)p (x, k). (1)

The solution, which is to consist of an ingoing plane wave
plus an outgoing scattered wave, may be expressed as
&Il x— ]

k== [ vypmidy.
47)x — y|
As |x|— o the behavior of ¢(x, k) is given by
, 1
P(x, kj—e®* — T (K, k) + 0( - ) (3)
4 |x| |x]
Here k' = (|k|/|x|)x, and T (k’, k) is given by
T, K= [ =™V 3y K dy. )

In this way, the “‘on-shell” T-matrix T (k’, k) contains the
scattering data.
Substituting (2) into (4) and rearranging, we find

£l ixd

T(k'k) = V(k' — k) —J Vik — k")

1

X ——————— T(k", k) dk” 5
k">~ k*+i0 ( ) Gl

or, more formally,
T=V-VIT, (6)

where I'T (k', k)is thematrix (k> — k? + i0)~'T'(k’, k). Equa-
tion (6) may be solved by iteration, yielding the Born series
for T:

T=V—-V({IV)+WNTV({IV)—--. {7)
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Following Friedrichs,” we define an appropriate class of in-
tegral kernels and a suitable Friedrichs norm || |l for this
class, such that

IKTM || <|IK |5 |M || (8)
and such that
(¥[e<a<l. (9)

Then the Born series for T converges in this norm,> and
we have
IT|lr<a(l —a)~" (10)

If we denote by 7, the sum of the first 7 terms of the
Born series, i.e., T, is the nth Born approximation, then

IT-T.le< X NIV

k=n+1

n+1
=2 (11)
1—a

In particular, for the first Born approximation T',, we have
|IT — T\||g<@*/(1 — a), (12)

and each succeeding approximation is better by a factor of a.

Of course it is well known that the Born series con-
verges geometrically. The trouble here is that estimates for
the “on-shell’ 7-matrix in three dimensions require the use
of a Friedrichs norm satisfying (8). In order to draw useful
conclusions, we must relate this norm to norms of a more
familiar form.

In Appendix A we show that for a particular choice of
Friedrichs norm and any convolution kernel F (k' — k) we
always have

10 ||F ||o<|IF || <1000 ||F [, (13)
where

1, = sup (1 + [K[)|D/F ()|}, (14)
with D’F any derivative of F of order j, 0< j<2, and

IF lo = sup |F ()| (15)

It follows that if

771l = sup {1+ [k|)|D’¥ (k)| } <(0.001)a <0.001, (16)
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and if B (k' — k) = T{(k' — k)/2, (k — k')/2) is the backscat-
ter matrix, then ||B || <||T ||¢, so

an +1
(1—a)

1B — B, llo< sup {|B (k) — B, (k)| } <(0.1) - (17)

We note that this estimate is uniform in k.

3. THE INVERSE PROBLEM

We summarize here the results of Ref. 1. We may re-
write (6) as

T=V-VIT=VU, (18)
where U is the ingoing Moller wave matrix,
U=]-TT. (19)

This operator is known to be unitary when the Born series
converges, i.e., when (9) holds.> Hence UU * = I, where

U¥=I+TT* (THK, k)= Tk, k") (20)
Applying (20) to (18), we find
T+ ITT*=V. (21)

We now define the projection operator &, which takes ker-
nels X (k'k) in our Friedrichs class into convolution kernels,
by

@K(k'—k)=K(k"k,k“"'). 22)
2 2
In particular,

OV(K —k) = V(K —k (23)
and

OT (K, k) = B (k' — k), (24)

where B ( — k) = T'( — k, k) contains the backscattering
data. Inserting (23} and (24) into (21), we find

V=B + @(ITI'T*). (25)
Inserting (25) in turn into (21) and solving for 7, we obtain
T=B+({[I—-0O)TIrT*). (26)

We show in Ref. 1 that Eq. (26) characterizes the scattering
kernels obtained from local potentials, and that this equation
can be solved by iteration for T in terms of B, provided

1B lle<b <}, (27)
in which case we have

IT]le<2b <4 (28)
If we now take for our first approximation

Tk, k) =0 (29)

and obtain our higher order approximations by interation of
(27),

T, K,k =Bk —k) + (I —0O)T,ITHK, k) (30)
then we show in Ref. 1 that

|17 —T,lle<i(85)(1 —85)~" (31)

so that the convergence of these approximations 7, to T'is
also geometric. Finally, our nth approximation to ¥ is ob-
tained from (25):

V,=B +OT,I'T* (32)
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How good are these approximations? We show in Ref. 1
that if (27) holds, then, for all n,

1T, lle<2b <}, (33)
and so

1Volle<b+ 462 <4, (34)
Moreover, it follows from (31) and (32) that

V=V, llp <4(85)"* (1 —8b)"". (35)

In particular, ¥ (k' — k) = B (k" — k| is the first Born ap-
proximation for the inverse problem, and (34) says

|V — Vs <1661 — 8b)~". (36)

Each succeeding approximation is better by a factor of 8b.

Thus V; is not much of an improvement over ¥V, unless

8b < 1, in which case V, is better at least by a factor of 2.
In terms of more familiar norms, if we assume

181 = sup {1+ [k|)|D’K (k)| } <(0.001)b, (37)

then we conclude from (13) that (35) and (36) hold with || ||
replaced by 10| ||,. Thus,

17— V.llo=sup {1 (k)— ¥, (K]}

<(0.025)(85 )"~ (1 — 85! (38)

which gives a uniform estimate for the error in the nth ap-
proximation to ¥ (k) which is uniform in k.

It is unfortunate that the conditions (16} and (37) are so
stringent as to preclude any but a theoretical interest. Presu-
mably better conditions can be given with more a priori
knowledge; e.g., with knowledge that the potential is radial.
In retrospect, it is perhaps not surprising that such stringent
conditions are required to include so broad a class of three-
dimensional potentials. Nevertheless, it should be empha-
sized again that the results described here hold for all suffi-
ciently weak potentials, and for a// sufficiently weak
scattering data.
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APPENDIX A

In order to derive Eq. (13) we introduce here a particu-
lar Friedrichs norm suggested by Schwartz.*
Let A4 (s, t ) be a (possibly vector valued) function of two
real variables (s, ¢ ). We define

MA(s, )= (1+ |s|)'"*|4 (s, )],

MAls,1)=(1+1t])/"|Als 1),
(A1)

NA(s, )= sup (2h) 2| (s+h t)—A(s—ht),
A<t
N'A(s,t)=sup 2h) """ Ad(s,t +h)—Als, t —h)|,
hilal
and
4| = sup 1415, 1)l (A2)
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Then we set

14 ||s = max{|MM 4|, [MN'A |, |M'NA |, |INN'4|}.(A3)

Lemma 1: Suppose ||4 ||s < o and set
Als, 1)

I'4 = e (A4)
s—t+i0
Then I'A4 is a bounded integral operator on L *(R), and
74 fll<C 4 sl - (AS5)

Lemma 2: Suppose ||4 ||s < =, ||B||s < «, and set

+ o
BIA(s,t) =J Bls,o)dlo,t)do (A6)
e o—1t+1i0
Then
|BI'4 ||s <{10 + 27)||B ||s ||4 ||s- (A7)

Proof: Lemmas 1 and 2 are both proved by Schwartz
(Ref. 4, p. 626) with undetermined constants in the estimates
(AS5) and (A7). We consider here only Lemma 2 in order to
show that with our normalizations in (A3), we can set the
const = 17 in (A7).

Following Schwartz, we set

fis,0,t)=B(s,0)d (o, 1) (A8)
and

* = fs,0,t)do
e o=t

where P denotes the Cauchy principal part. Then, since
Pyt= [1/(c —t)]do =0, we have

|g(s,z)|<j e | fls,o,t)—fls, 8 t)] do

gls,t)="P (A9)

lo—1]
-2
o—tlx1  jo—1]
PYRNTE
<l 8] o=t " 4o
lo—t!>1 ‘O'—t|
o—1|12
+ 2|4 |IB]] do
lo—tl<1 L O—1t
<[4 |lsliBlls {4 + 8} = 12||4 ||s[|B ||s. (A10)

Moreover, since P { = 2 [1/(0* — h )] do = 0, we also have
lgls, £+ h) —gls, t — h)|

<24 | fﬂ —_—_—fjst)f 1 do|

—Zh‘ f+°°fs,o+t t)d }

s

<2hf Ifs’a+t|atg)_,{is|h+””d
+2hf St |(r) i(sit_h’t)da

<anllA | B |~ %da

o |a._ 1|1/2

d
z—1 7

= @h a8 12
(4]
=(2h)'?|l4 || ||B ||6. (A11)
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Now, since {cf. Ref. 4 p. 615)

+ +
f J608) yop| L8R 4o inpisge),
—w O—1t+10 —w O—t
(A12)

we conclude that || BI'4 ||s <(10 + 277)||4 ||s||B ||s, as re-
quired.

Now suppose F (k) is a function of the 3-vector keR?,
and set

W llo = sup [F(k)],
(A13)

IF Il = sup {(1 + |k|)|D'F(K)[},

where D, is any derivative of F of order j, 0<j<2. If we
regard F (k' — k) as a convolution kernel, then we may define
the Schwartz norm ||F || for F as follows:

Setr = k|, ¥ = [K'|, k = ro, k' = r'e’, and

IG(r,7)| = max[sup LJ‘ |F(ro — Fo')| do’,
o 47 Jo

sup —}—J |F(re — re')| dm]. (Al4)
o 47 Jo

Then |G (r, r')| is the Holmgren norm of the operator G (r, r’)

acting on L,(£2 ), where 2 is the unit sphere in R®, and so
|G (r, 7')| bounds the operator norm. Now if we set s = 77,

t=r"? and

(st)l/4F(Sl/2 1/2 /) S,t>0,
Afs, t)= AlS
s, 1) [ 0 otherwise, (A13)
then we can define ||4 ||s by (A3), and define ||F||s by
IFlls = Il4lls- (A16)
Lemma 3: Suppose ||F|j; < . Then we have
I Nlo<IF fls <167\ F |- (A17)

Proof: This Lemma is also proved by Schwartz (Ref. 4,
p. 633), again with an undetermined constant in the estimate
(A17). We show here that we can take const = 167

We start by observing that if < #/, then |ro — F'e’|
>1/2r'|® — o'| which is easily seen by drawing the appro-
priate picture. Hence, if | F (k)| <C (1 + |k|)~', then

[Flro — re’)|<C(l +plo — o’|) 7, (A18)
where
u = imax(r, r). (A19)
Hence we have, with ¢ = angle between o and o',
if Firo —re)ldo<2r fﬁ—-—s}EﬂL
C Jo o (1 + usin(@p/2))
. f"” sin 2 5 df3
o (I +usinpB)
— 8 J‘ zdz
(1 4+ pz)
= —2 Tzl dx
gt z
= (87/u’)|p — In(1 + )|
<4m/(1 + p). (A20)
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Hence we have [cf. (A14)]

4rC 4r
IG(r, ¥)|< < Fll.
<o ST
The same is true, of course, if Fis replaced by D/F, where D/
is any derivative of order j, 0< j<2. Hence, with 4 s, ¢ ) given

by (A15) we have

(A21)

(14 Is12(1 + J2 V)4 (s, 1)I< 16| F | (A22)
Similarly,
|A(s+ht)—Als—h,t)
aF OF (12gy _g112 ,)| (s+h)l/2_,(,s2—h)”2
(2h)
“TU+ar’ (423
and

[A(s+ht+h)—Als+ht—h)—Als—h)t+h)
+A(s—h,t—h)

< aZF(sl/Z 12 ') (S+h)”2 (s_h)llz
ardr P
(t+h)l/2—(t—h)”2‘ 417HF“1 . (A24)
(2h)"2 (1 +p)

Combining all these estimates, we obtain the upper bound in
{A17).

For the lower bound we simply observe that from {A3)
we have

max{|MN'A|, [NN'A]|<]||4 |s- (A25)
Hence, if we set £ = 0 in (39), we find

sup (2h)7VA1+ s s mI< s (A26)
while if we set s = ¢ = 0, we find

Sup (2h)='22R") A (b, B ') <|4 ||s}- (A27)

I <1
It follows that
sup (st) "4 A (s, t)|

=sup G (s"% ¢ 3<||4 ||s. (A28)
Now from (A14) we find
G52 0)

= max{sup |F(s' )|, Lf |F (s 0| dw]

47 Ja
= sup |F (5" %w)|. (A29)
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Hence by putting ¢ = 0 in {A28) we conclude
sup |F (k)| = sup |F(r, &)|<4 [l (A30

which gives the lower bound in (A17).
If we now define the Friedrichs norm ||4 || for A by

14 [|le = (10 + 27)||4 ||, (A31)
then we find, according to Lemma 2, that

IBIA ||g<||B |le]l4 ||¢ (A32)
and, according to Lemma 3, that

10(|F [lo<IF || <1000}|F |- (A33)

APPENDIX B

As a simple example, we consider explicitly the case
where the backscatter data are given by

B(k) = €/(1 + K?) (B1)

with € a small parameter to be determined. One sees easily
from (37) that

1B 1}, = 2. (B2)
Hence if we choose € so that
326<0.001, (B3)

then B satisfies (37) with b = , and our analysis applies.
The first Born approximation ¥, to ¥ is now

Vk) =B (k) =e/(1 + k. {B4)
In configuration space this becomes
Vix) = €e */4r|x]|. (BS)

The error in this approximation is given by (38), which re-
duces to

|V k) — V,{k)|<(0.025)(1/2)}(1/2)"' = 0.0125, (B6)
valid for all k.

'R. T. Prosser, “Formal solutions of inverse scatteriang problems, 1,” J.
Math. Phys. 10, 1819-1822 (1969); I1, ibid. 17, 1775-1779 (1976); 11, ibid.
21, 2648-2653 (1980).

2K. O. Friedrichs, Perturbations of Continuous Spectra, Comm. Pure Appl.
Math. 1, 361-405 (1948).

3This condition, of course, rules out potentials admitting bound states (Ref.
2).

4J. Schwartz, “Some non-self-adjoint operators. I,” Comm. Pure Appl.
Math. 13, 609-639 (1960); 11, ibid. 14, 619-626 {1961).
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Perturbation theory of inelastic resonances is developed. From the fact that the resonances appear
as the roots of the Jost function, we show that perturbation coefficients are obtained without use of
the complete set. The theory is generalized to the case when the unperturbed Hamiltonian is p-

fold degenerate. The near degenerate case is also discussed, and the radius of convergence for the
perturbation series is estimated. We also treat the perturbation theory of residues both in the

nondegenerate and degenerate case.

PACS numbers: 03.80 + r, 03.65.Nk

1. INTRODUCTION

The theory of resonances has been an intriguing subject
of research ever since the first papers by Breit and Wigner.'?
Results show that this problem can be treated in two ways,
depending on what kind of information one wants to obtain.
In the earlier line of research resonances were defined in
terms of the complex eigenenergies of the Hamiltonian,
while in later work the resonances were defined in terms of
the complex angular momentum.*~> The two approaches are
complementary but the Regge theory, as the latter is usually
referred to, offers more insight if we are concerned with the
calculation of cross sections,®’ or with the classification of
resonances.® In many cases, however, the complex energy
formalism is used as an alternative, such as in the study of
decay properties of well-defined states,” in the analysis of the
resonance cross sections where only a few partial waves are
involved, and lately in atom-surface resonances.'*'? For his-
toric reasons, when we talk in this article about the reson-
ances we will understand the complex energy formalism.

In order to understand resonances several techniques
were developed: a partitioning approach,'*'* the formal
treatment,'>~'® and lately, the coordinate rotation meth-
o0d.?>*! Of all the methods, perturbation theory is the most
attractive since it gives the simplest understanding of how
resonances are formed. However, there are obvious limita-
tions to such an approach, as clearly pointed out by Fonda et
al.*? Nevertheless, there is still room for improvement in the
perturbation theory and one is offered here. The perturba-
tion theory presented in this article is an extension of the one
recently developed for the inelastic Regge poles.?

Before giving the outline of the theory, let us make a few
general comments about the shortcomings of the perturba-
tion approach that has been in use so far. If we set aside the
R-matrix method as not being perturbation theory in the
true sense, we have only the one based on the Green's func-
tion formalism.?* It offers a simple and lucid description of
resonances. However, its formal nature obscures some diffi-
culties when it is used as a basis for developing a perturbation
theory of resonances: (a) the wave functions are obtained
from the iteration of Fredholm type integral equations, a
procedure which in many cases is not convergent,? (b) it
requires definition of a complete set of functions, e.g., for

*'This work was supported in part by the grant NSF F6F006-Y.
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determining the “level shifts,” (c) it is not clear how to treat
the degenerate resonances, i.e., the case when the unper-
turbed Hamiltonian is degenerate, of (d) how to treat reson-
ances which are true resonances in the unperturbed Hamil-
tonian. Furthermore, the theory does not offer a simple way
for calculating the peturbation expansion of the residues of
the S-matrix.

In this article we develop a perturbation theory based
on the fact that the resonance poles appear as the roots of a
determinant of the Jost function.?®?” The Jost function will
be determined by an integral equation of Volterra type for
which the iteration procedure produces a series which is ab-
solutely covergent.”® We also note that in the Jost function
formalism there is no need for separation of channels into
closed and open ones, such as in the approach of Feshbach. '
Therefore we have complete symmetry between the reson-
ances which are bound states and the true resonances in the
unperturbed Hamiltonian. Furthermore, at no point do we
use a complete set for determining the perturbation coeffi-
cients. The advantage of this was shown in the simple case of
a single channel problem.?® This means that the level shift is
given only in terms of the solution for the particular unper-
turbed state which is subjected to the perturbation.

Another difference from the previous theory is the
choice of variable which is expanded in a perturbation series.
In our approach we expand the wave number, while usually
the expansion is done for the energy variable. Although a
minor point, in some cases we obtain better results as shown
in a single channel case.?’

We also show in this article how to treat the more gener-
al case in which there is a p-fold degeneracy in the unper-
turbed Hamiltonian. An estimate is given for the radius of
convergence in both the nondegenerate and degenerate
cases. It is shown that if we treat the nondegenerate problem
as the degenerate one, with a suitable definition of the pertur-
bation, the radius of convergence of the perturbation series is
considerably enlarged.

In this article we will only treat the Feshbach-type re-
sonances, i.e., the resonances which are bound states of the
unperturbed Hamiltonian. However, the theory is of general
validity and can be applied to the resonances which are also
true resonances in the unperturbed Hamiltonian. In such
cases, though, one should make an analytic continuation of
the potential in the complex coordinate plane.?

In Secs. 4 and 8 we derive a perturbation theory for the
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residues both for the nondegenerate and degenerate case,
respectively. We obtain results which are in agreement with
the formal theory of resonances, i.e., the modulus of residues
in nondegenerate theory is proportional to the partial width
of resonances. In the degenerate case we find the same agree-
ment with an additional factor measuring the order of degen-
eracy. In addition to this result we also find the phase of
residues, which in the formal theory is essentially not
determined.

In this article we will only consider the s-state reson-
ances. The theory for nonzero angular momentum reson-
ances can be obtained by simply modifying the potential ma-
trix by the centrifugal term.

2. PERTURBATION THEORY FOR NONDEGENERATE
POLES

Let the set of multichannel equations describing inelas-
tic collision be

Y =(V—-K*, (2.1)

where Vis the n X n matrix and K ? is the diagonal matrix of
channel energies. Let us also assume that the first few chan-
nel energies are negative, in which case they describe states
that are not observed asymptotically. Qur main interest, as
was pointed out in the Introduction, is to calculate their con-
tribution to the S matrix, in particular when their configura-
tion allows formation of Feshbach-type resonances. In the
model which will be considered, we will assume that the
interaction between channels is weak, in which case the po-
tential matrix V allows separation,

V=V,+¢€eV’, (2.2)
where V' contains all the off-diagonal elements of V. ¥V, is
therefore diagonal.

The set of equations (2.1) has a solution in the form of a
Voiterra type integral equation

Vv=tdo+ —K —'JrG (V' (¥ )Y, (2.3)
2i 0

for which it can be proved that the iteration series converges
absolutely.?® The kernal is defined as

G(rr)= fo (r)fo (r) = fo (N fo (¥), (2.4)
where the functions ¥, and f;° are the regular and irreguiar
solutions of the uncoupled equations (2.1), respectively.

They are, therefore, the diagonal matrices.
For large r the irregular solutions are defined as

fER~e™ , roow (2.5)

while the regular solution is given in a form of a linear
combination

Y~ fo i ™+ fo (1M, (2.6)
whereJand J * are the Jost functions (in fact the » X #n matri-
ces, but we will refer to them as functions), and their ratio
J *J ~ ! gives the S matrix. From the understanding that the
poles of the S matrix have physical interpretation of bound
states and resonances, these observables are given from the
solution of the equation

F=Det(J)=0. 2.7)
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It can be shown that the Jost function J is given by*’
J=J, — zi K- 'f dr f5 (V' (F(Adr, (2.8)
) 0

where the unperturbed Jost function J,, is diagonal and cor-
responds to the solution of (2.1) with € = 0. By iterating (2.3)
the resulting series for (2.8) is absolutely convergent, with the
same restrictions as for (2.3). Therefore, the Jost function J is
given as a power series in

2
J=Jy+ e, + %Jz + (2.9)

where

J= Lk —‘f dr [ V', (2.10)
21 0

and

J,=1K"~ 'J- dr fo V'K _'f G (r,/\WV'(r'W(rdr,
’ ’ 2.11)

with the kernel defined in (2.4). In our treatment, the higher
order corrections to J will not be required.

The derivation of the basic equations for obtaining the
poles of the S matrix have been so far only formal and no
conditions on the potential were given. As pointed out by
Newton,* the function F, given by (2.7), is analytic near the
roots which correspond to the resonances, but the Jost func-
tion (2.8) may not be defined in the same vicinity if more than
one channel is closed. The reason is that, in general, ¢ is
exponentially increasing function for large r and and if the
matrix elements of V' are not sufficiently rapidly going to
zero in the same limit, the integral in (2.8} is infinite. Al-
though for an absolute convergence of (2.3) it is sufficient
that the first moments of V are finite, the same is not true for
(2.8). Therefore we will define a cutoffin the potential matrix
V (r)atsomelarge » = R. Beyond that point ¥ {r)isidentically
zero. For such a potential (2.8) is absolutely convergent, but
the roots are now R-dependent. In order to obtain the R-in-
dependent roots we will in the final expressions for the per-
turbation coefficients of the roots take the limit R— oo, if
such a limit exists. As will be shown, this limit exists and we
will associate such roots with those corresponding to the true
noncutoff potential ¥ (r), for which we do not require more
than that the first moments are finite. For convenience, in
the derivation of the roots we will omit any reference to R,
but having in mind that they are defined in such manner.

We will now solve the equation for the poles of the S
matrix (2.7) with the assumption (2.9), provided that no two
roots of equation

Fy=DetJ;)=0 {2.12)
for different channels are equal (the assumption of nonde-
generacy). However, before doing that let us comment on F.
The F is multidimensional in X but by replacing each ele-
ment of K by

K, =(k*—E)"3, (2.13)
where E, is the threshold energy of the ith channel, we look
for the roots of (2.7) in the variable k. The set of all Riemann
surfaces for each K is replaced by a single surface in the
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variable k, with as many branch points as there are channels.
Therefore, we should be careful how to define the physical
sheet of k in order to get physically meaningful results.

Let us now assume that one zero of Eq. (2.7) is «. It is
obviously a function of €, and for a small perturbation we can
develop « in a power series,

k=ko+ ek, + (€/2) ky + -, (2.14)
where k, = k(e = 0) and
dx d’x
= % em0), k= =0). 2.15
ky e (€=0), k; de (€=0) (2.15)

The assumption on (2.14) is that the roots of F;, are not close
to the branch points in the & plane so that when the perturba-
tion is included the radius of convergence in € is smaller than
1. Otherwise, the series (2.14) is not convergent. We will also
discuss other limitations on {2.14) in the subsequent sections.

It has been shown that the coefficients of expansion
(2.15) are related to the function F by*?

k.= —F/F', ky= — (1/F)[F+2kF +FF"],
(2.16)

where we use the notation F = JF /e and F' = F /ok.
Therefore in order to obtain the coefficients in the expansion
(2.14) we require partial derivatives of Fin both € and k
variables, and we must take their limit k—«(€) and then take
the limit e—0. However, in order to avoid calculation of k,
through the second derivatives of F, we can evaluate dr/de
for finite € but to terms of order O (€?), i.e.,

dr/de =k, + €k, + O (€%), (2.17)

in which case we get k, without using (2.16). Such a proce-
dure considerably simplifies calculation of k, in the degener-
ate case.

The positive imaginary roots of F;in X are of particular
importance to our analysis. When the channels are uncou-
pled they represent the bound states but with the coupling
they become decaying states, i.e., Feshbach-type resonances.
Other roots of F,, in particular the complex ones, will not be
treated in this article. Let us therefore assume that &, is the
bound state root of the pth element of uncoupled Jost func-
tion, i.e., j ,(ko) = 0. In such a case F’ to zeroth order in €, is
given by?!

F’ =jlj2":jp—1j,pjp+l":inEj’pPU)! (2.18)
wherej; are the diagonal elements of J,,, and P designates the
product of allj; except the pth. However, to obtain (2.17) we
need F'to O (€?). We therefore take the limit of F ' for k—«(e)
and expand F' in powers of €. For small, but nonzero €, we
can write

Jp~Jplk — ko)~€k, 7,
(2.19)
Ji~Jn +iolk — ko)~jio + €k o, i#p
where we have used (2.14). The derivative of j , is taken for
€—0. We find

e

F'=j,P(j)+ekj,P()) 3 — + 0’
i=1#pJi
Let us now find F to O (¢)*. By taking into account that
the diagonal terms of J, are zero, we obtain

(2.20)
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: , |
F=epi[Uns =2 3 HNuli, |+ Ol
i=1#pJ;
(2.21)
hence k, as given by (2.17), is
k,=0 (2.22)
and k&, is
1 1
ky=—2 > —ulli)ip —(Jz)pPJ (2.23)
Jpl i=T#pJi

as result analogous to the Regge poles.”® The matrix ele-
ments of J, and J, are given by (2.10) and (2.11), respectively.

Higher order coefficients are obtained in a similar
manner.

3. DISCUSSION OF &,

As we have shown, for a perturbation of the form (2.2),
the first order correction in the expansion of the poles of the
S matiix in € is exactly zero. The leading term is &,, given by
(2.23). However, such a form of k, can be reduced to a
simpler form, more tractable for discussion. If we take into
account (2.10) and (2.11) and use (2.6) we obtain, after some
algebra,

- n 1 0 o0
P _U v drl v, v ar
2 K 1:12¢pKL]'1 A ¢p p1¢’1 r ) fi 1p¢p r
+[arv,vsi [aruvu,), 3.1
0 0

where we have dropped all the zeros referring to the unper-
turbed solutions. The function ¢, in (3.1) is the unperturbed
bound state.

We have also used the relationship for the normaliza-
tion constant of the bound state ¥ ,, given by’

dj ©
jr == =f dr=N?2 32
/e aK,, o '@ 3.2
Since ' is derivative with respect to k, we have
i, Jjtk, =kN? (3.3)

where k is real. Therefore ¢, in (3.1) is a normalized
function.

Some of the channels are closed and some are open. We
will now show that &, is finite despite the fact that in (3.1)
there are matrix elements connecting the pth channel with
the other closed channels. Let us assume, for simplicity, that
the first s channels are closed (it follows that p<s) in which
case the solution f,, is, for large r

frin~e ™, rocw. (3.4)
However, ¢, is
¥ ~ej, (3.5)

therefore the integrand in (3.1) containing ¥, is

(-]
—K,r K;r —K.r—K,r ’
e K Vp,-(e f e "V, dr
r

+e & fo el e V,.pdr') (3.6)
and goes to zero for r— oo at least as exp( — 2K, 7). There-
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fore, the coefficient k, is finite.

Let us now calculate the portion of the sum in (3.1)
corresponding to the closed channels only. j, in such a case is
real and K| is positive imaginary, therefore

k,(cl.ch.)

1
- 2kl_l#me UV 1V
o drw,,V,,frfodrv,V,,,wp] (3.7

is real, meaning that the interaction of ¢, with the closed
channels cannot produce a decaying state, but this term only
contributes to the level shift. The imaginary part of &, is
entirely due to the interaction of ¢, with the open channels,
as one expects on physical grounds.

The imaginary part of &, is therefore

Im(k;) = Zi (ky — k)
1
1
_ 3.8
4k1=20;)en k, j, ji [.f Y pl¢ldr] ) (3-8

which is negative sincej;* is the complex conjugate of j,. The
remaining real part of k, is obtained by subtracting (3.7) and
(3.8) from (3.1).

The resonance energy is now

k% = (ko + Lk,)? = k2 4 ko[Relk,) + iIm(k,)] + k3,
(3.9)
from where we obtain the level shift and its width,

4 = kyRelk,), I = kJIm(k,). (3.10)

By noticing that Re (k,) is calculated from (3.1), as de-
scribed earlier, we notice that the level shift is given with no
reference to the complete set of unperturbed solutions of
Hamiltonian, as it is given, for example, in Feshbach theory.
The level shift is entirely determined by the interaction of the
bound state ¥ ,, which is being perturbed, and all other
channels.

4. PERTURBATION EXPANSION OF RESIDUES FOR
NONDEGENERATE POLES

The diagonal S-matrix elements for the open channels
were shown by Newton*® to be

where F was defined in (2.7) and F ( — K, ) means that the ith
element of K in Fis replaced by its negative value. The off-
diagonal elements are then given by

S} =S5,8, —F(—K,, —K,)/F, (4.2)

where F{ — K, — K;) means that both variables K; and K
have changed their sign.
By definition the residue of S;; is

B =lim(k — «)S; (4.3)
k- i
and it can be easily shown that the off-diagonal residues are
given by
=(B8.5)". (4.4)

lim(k — x)S,
k—+x

Therefore only the diagonal residues are independent. The
pole (€) in (4.3) is from the closed channels.

The residues are also a function of € and in the weak
coupling limit we can write

Ble) =By + &b\ + (€/2B, + - (4.5)

where the subscript refering to the ith channel was omitted
for convenience. However, it should be born in mind that the
expansion (4.5) applies to every open channel.

In order to obtain the leading term in the expansion
{4.5), let us first take the limit (4.3)

. F(—=K)
= lim —— 2/
B klril( F'
and calculate the leading terms of F{ — K')and F' in €. The
index of K in (4.6) was dropped with the understanding that
the minus sign applies to only one open channel.
As it was shown in (2.18), F is of the order €” and given
by
F'=j" P(j. (4.7)
On the other hand, F{ — K ) is zero in the limit €0 since
F,( — K) is a product of the elements of unperturbed Jost

function and one of them in the closed channels is zero.
Therefore

By =0. (4.8)
To obtain the leading term of F(

(4.6)

— K) in €, we should

S, =F{(—K,)/F, (4.1)  notice thatj , is given in the form
|
JoWKl€)~j , 41yl — ko) + 17k — ko' ~(€/2) ], k> + O (€), (4.9)

where we have taken into account that k, is a zero of j, and
that k, = 0, as shown in Sec. II.

The matrixJ ( — K ), as a function of €, contains terms of
the order €° only on the diagonal, except the pth element,

which is of the order €? and given by
Il — K)~(€/2)[kf, + ), ], (4.10)

where (4.9) was taken into account. The terms of the order €

Vi) i)y

]

are all the off-diagonal elements of J ( — K ). The determinant
of J( — K) can now be evaluated as an expansion in €. Since
the pth diagonal element of J ( — K ) is of the order €2, the
factor € which multiplies the pth column and the pth row can
be taken out leaving a determinant of the matrix with the
elements of order €° along the diagonal and in the pth row
and column. Therefore we get

(4.11)

F(— K= ezP(j)[akzj'p + W = Kollpp = :z# o

2134 J. Math. Phys., Vol. 23, No. 11, November 1982

_ Wi — Ko)) o i _Ko))op] Jol — Ky)
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where k, is given by (2.23). By inserting k, into (4.11) we get

Vi)poWi)o,

n—xa=55@%%fﬁbmw—mv«w”+z

Noticing that for the open channels j( — k) =% (k) = j*(k)
and that
Wil = Kolpo =) por Sl —Kolop =W Fho,  (413)
where we have taken into account that ¢ is symmetric with
respect to the change =— — k&, and also that
(JZ) rp = (JZ( - K())) pp?
we obtain for F{— K)

F(—k)= —¢& ;jé—g,(—p}:?[fdwépw]; 15)

Therefore, the leading term in the expansion (4.5) is of the
order €* giving for 32
i - 2
= — ar ¥,V ] ,
ﬂZ 2kk0j(2) [Jo ¢0 Opd/p
where ¢, is normalized.
Higher order coefficients are obtained by calculating
terms of the order €% in F( — K ) and of the order € in F'.

(4.14)

(4.16)

5. PERTURBATION THEORY FOR DEGENERATE
POLES

In Sec. 2 we described a perturbation theory for the
poles of S matrix with the assumption that only one element
of the Jost function in the uncoupled equations has the root
ko. In this section we will take a general case where p ele-
ments of the uncoupled Jost function have the same root &,
out of the total of n elements .

For a clearer presentation let us introduce a new nota-
tion. We will designate by g(k ) the p elements of uncoupled
Jost function, which have the root k,, and we designate  (k )
those which are nonzero for k,. The dimension of g is p and
the dimension of 4 is s, giving the total p + s = n. We will
designate by A the first-order perturbation to the Jost func-
tion J, and the second order by B, therefore we have

J = Jiv iz — g& 0 +€A11, Ay,
S I 0, A Ay, Ay
& |B,, B
€ | by ] - (5.1)
2 1By, By

where we have assumed, as a matter of convenience, that g
forms an upper left submatrix p X p. Let us also assume that
A has nonzero terms on the diagonal, in contrast with Sec. IL.
The reason for this will be discussed later.

The determinant of J is designated as F, and its zeros

F=0
are the poles of the S matrix. Let one of the roots of (5.2) be
«{€). It can be expanded in the power series in

xl€) = ko + €k, + (€2/2)k, + - (5.3)

and for small € we can write for J,,
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_ 5 Uil = Koot — Koo, ] .

Jol — Ko)
(4.12)

J~e€lkg +A4,)+(€/2)gk, + kig"
+2k A + By,)+0(€), (5.4)

where the terms on the right-hand side are evaluated for
k = k,. The last result shows that the matrix elements of J
are all of the order € except the diagonal ones corresponding
to A.

The coefficient &, in (5.3) is

k,= —F/F' (5.5)
and if we use the representation
F =exp[Tr(In(J/))] (5.6)
we can write for (5.5)
NS Uil B (5.7)
Tr[J~U1)

The inverse of J is singular in the limit e—0 because if we
take into account (5.4), only the submatrix J,, is nonzero.
However, for a finite but small €, we can write approximately
elkg +A4y,, €4y,

-1
J €Ay, h
1/e)k, g +A4,,)7", °
. (1/€) 18'*: 11)_l o(€) ) (5.8)
o), h
Hence the traces in (5.7) are
o 1
Tr(J"J)~:Tr[(klg' +4n) "' 4y]
_2_k
€ €
XTrl(g'k, +4,)”'¢'],
TrlJ ~'J ) ~(1/e)Trlk, &' + 4,1)7'¢] (5.9)
and the coefficient k, is
k, =k, P (5.10)

Trl(gk, +4.,)"'g']
Provided g’ is a nonzero matrix, the last equation is an im-
plicit equation for &k, and has a solution if and only if

Det(g'k, +4,,) =0 (5.11)

giving p solutions for k,. We will assume that they are all
nonequal. Therefore, if p unperturbed zeros of J are degener-
ate, the first-order correction to the roots destroy the degen-
eracy, the splitting being given by the solutions of (5.11). In
the next section we will show that in the case when 4 = J, all
the roots k, are real.

The second-order coefficient k, is more difficult to ob-
tain and before we calculate it we must perform certain
transformations on the Jost function J. Let us define for k,,
as calculated from (5.11), a matrix U which diagonalizes
ki +g "4y,

U='(k, +¢' "4, )U=A. (5.12)

As will be shown in the next section, if we put 4 = J,, the
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matrix Uis not unitary since g’ ~'4, is not symmetric. How-
ever, by a simple transformation of the form Ng'~'4,,N ~},
where N is a diagonal matrix with the nonzero elements, we
obtain a symmetric matrix for which we know that the eigen-
values are real. Therefore, we can write U = N ~'T, where T’
is unitary, hence the eigenvalues A are all real. It turns out
that the elements of NV are the normalization constants for
the degenerate states.

We now show that one eigenvalue of 4, is zero, all the
others being nonzero. Taking the determinant of (5.12) the
left-hand side gives (5.11), while the right hand side is a prod-
uct of the eigenvalues. Since the &, are all different, by our
assumption, Eq. (5.11) has only first-order zeros, therefore
the product of the eigenvalues 4, is zero in the first order.
Hence only one of the A, is zero. We can now define the index
lof A,. It indicates that the / th eigenvalue is zero and for the
convenience we will assume that it corresponds to the / th
root of (5.11). If this is not the case we can always arrange the
sequence of K, in order to get this correspondence. In our
discussion we will drop the index / having in mind, when
necessary, that all the derivations are done for a particular
k.

Let us now transform the matrix g'~'J by

U-', ol|lg~%, 0| .|U, Ol
Y=
0 1 0, 1 J
—1,.—1 U, U—l I—lJ
U~¢g Uy, g 2 (5.13)
JZIU’ J22

in which case when k = «{¢€) the matrix Y, is
W ~€A + 72U Yk, + g kg + 2k, g T4,
+g'7'B,,)U =€A + (6/2)y. (5.14)

The second-order coefficient k, is now obtained as in
(2.17), where Y now replaces J. We get

dele)  Tr[Y"'Y]

- _ =k, + €k, + O (€?),
de Tr(y-'y'] €

(5.15)
J

Tr[Y_‘i/'] =i20” '+'_
€

P

+ . 2 ﬂ“a" + z (Bp+llal,p+x +ﬁl.p+ll p+1,1)] +0(6)

=1%#1 i=1

Similarly, we can calculate the trace of Y ~'Y”,

Tr[Y ~'Y’] =é+i [Bu + (U k8" + 450y

+ B,,] + 0 (5.21)
i=1 ;él
Their ratio gives {5.15), from which we obtain k, and &,.

We have

—17
_m:l_Tli= — k, — €k, =a"[ 1+_6.__
Tr[Y 'Y’} a,
4 ar N
X{—Yu —(p+1) EI_I’L;‘_“"_
+(U g By, +2k AT + k3 ")U)u”
(5.22)
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where Y ~! is singular in the limit e—»0. By taking into ac-
count that the /th eigenvalue A is zero, and that Y, is of the
form (5.14), we obtain Y ~! as a power series in

= ot % 0= M (e
(Y )ij_?aij+gﬂij+0(€)_Det(Y)( )y

(5.16)

where M; are the minors corresponding to the element Y.
The constant C is suitably chosen in order that the elements
a; and B; are formally simple. The constant C will cancel in
{5.15).

It can be shown that « is zero everywhere except in the
position (1,1) where we can take it to be

(5.17)

The nonzero elements of B, when the minors M, in (5.16) are
calculated and the normalization (5.17) is assumed, are

Bi= _[i?’n 1

a” = 1.

%] i<pi#e  (5.18a)

r

By = i +z

i aq|"+Pa’+P|q ]
’

r—1;e12/1 = h r+p'r+p_q=1,;e1 A,
(5.18b)
B = [m ‘ u;;_] . i<p (518
r—l r
1 1 .
Bi= — ay, Be= — a;, i>p. (5.18d)
i—p hi—p
In Eqgs. (5.18a)-(5.18d) we have used notation
= (U'—lg'—]Alz)n» a; =AU
a; =(U~"'g"'4,U); Jj<p (5.19)

wherei> p. Thetraceof ¥ ! Y can now be calculated and it
is given, to the order € by

Buay + (U~'g' (kA1 + B,)U)y,

(5.20)

from which we obtain
k' = —a,, (5.23)

which is just repeating our previous result that the / th eigen-
value is zero. The coefficient k, is

k= —k3(U~'g " 'g"U), —2k (U 'g'A1, U

ar+p,l

(5.24)

s a ,
— (U~ 7'B U +23 hr+p
r=1

Since the coefficient &, is given for a particular kl, we have p
values of &,.

6. DISCUSSION OF DEGENERATE PERTURBATION
SERIES

As it was shown in the last section, when there is a p-
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fold degeneracy in the unperturbed system the first-order
term in the expansion (5.3) splits the degeneracy. The magni-
tude of the split is calculated from the equation

Det[g'k, +A4,,] =0 (6.1)

and if 4 is taken to be J,, defined by (2.11), we can prove that
the k, are all real. By taking g’ out of the bracket in (6.1), we
get

1 __ 1 J T oy
(g All)pq 2kN2P o prpq¢qdr’ (6'2)
where the relationship (3.3) was used.

In general the matrix (6.2) is not symmetric but it can be
made symmetricifit is transformed by Ng’' ~'4,,N ~', where
N is a diagonal matrix of the normalization constants of .
Since the determinant in (6.1) is invariant to such a transfor-
mation we obtain an equivalent equation

Det[k, + Ng'~'4, N '] =0. (6.3)

Therefore, Eq. (6.1) is equivalent to solving the eigenvalue
problem for k,, with the symmetric and real matrix, hence
the roots are all real. This is also the proof that the transfor-
mation matrix U from (5.12}is not unitary but that the eigen-
values A are real since U can always be replaced by

U= N ~'T, where Tis unitary. In fact, the eigenvalues 4, for
the / th root k,, are given by

A=k k. (6.4)

The second-order coefficient k; in (5.24) resembles the
one nondegenerate case in (2.24), except for the terms with &,
and the transformation matrix U. This is to be expected since
k, is equal to zero for the nondegenerate case, and the matrix
Uis a mixing parameter between degenerate levels. In order
to simplify the discussion of &, let us define a matrix k,, for
each k,, with the property

k, = (U 'k, U),. (6.5)

Let us also replace g—j, A—J |, and B—J,. The matrix
k, can then be represented as a sum of two terms; one in
which the sum over the intermediate states in J, extends over

the degenerate levels only and the other which contains all
the other summation indices, i.e.,

kz(I).——k”J + Ly 9 ( -'f drf = V¢)

- —N“f dryV'K ! fK(r,r)V (¥)¢dr'N

(6.6)
and
(ky(ID)),, = — —— N N, L
2k i § S = nond. Kxjs
x| [“¥o¥ e[ 1V e

+[Carv, v, 57 [[ars, Vo] 67

In the last expression A is the normalization matrix
with the elements defined by (3.2), and the functions ¥ corre-
sponding to the bound states are all normalized.

The matrix k(1) is real which can be proved by noticing
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that the wave vectors & , are imaginary and that the Jost
functions j are real. Therefore, this part of k, will only con-
tribute to the real part of k,. The imaginary part of k, comes
from k,(11) and can be obtained as in (3.8),

! N, N,

i)

Im{k,(11)),, = — o
=open RsSsJs

xfdr YoV ¢J: dry Vi, (6.8)

thus giving for the imaginary part of &,

1 1
Imky) = = —
4k5 gF’e"‘K js]s

XL ;degT”’L iV, "’s]z’ (6.9)

which is in close analogy with (3.8) for the nondegenerate
case. However, the real part of k, contains two terms which
are not present in the nondegenerate case.

The p-fold pole k, thus produces, when the coupling is
introduced, p complex poles. The poles are clustered around
ko, with the spacing between them being kK {) — k¥, This im-
plies that the diagonal S-matrix elements near such poles do
not have the simple form

S~ B (6.10)
k — kle)
but are given by
e B!
Sﬁ ~ - . 6.1 1
2% - xie &40

It is also clear that the usual form for the Breit—Wigner reso-
nance is destroyed and replaced by a more complicated
structure, in fact the complicated structure given by

g *)
s~ § LEE (6.12)
Lj=1 (k —K,)(k - Kj*)
The off diagonal elements of the S-matrix are
g —(m 172
S; = (z ——————B' A, ) . (6.13)
im (k —K))k —x,,

In Egs. (6.12) and (6.13) we have neglected the background
term, which is present in the exact Breit-Wigner formula.

7.NEARLY DEGENERATE CASE

Let us assume that in the uncoupled Jost function J,,
only one j,, say ji, is zero for k = k,. Let us also assume that _
p — 1 other j, are approximately zero, meaning

Jilk)~jilko) +jilkollk — ko) 1<i<p (7.1)
where |f,(ko)| ~0. The question is whether in such a case one
should use the nondegenerate perturbation theory of Sec. 2
or one can define j,(k,) as a perturbation and in the zeroth
order treat the problem as a p-fold degenerate one. In the
notation of Sec. 5 we define in the latter case

& =Jjilk) —jilko), Ay = W)y +Jilko) (7.2)
and the problem is formally replaced by a degenerate pertur-
bation scheme.
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To answer this question we will analyze the two-chan-
nel case, where the whole problem will unfold in simple ana-
lytic terms. The problem which we solve, analogous to (2.7),
is

glx), ealx) | _

ealx), hix)| ~ (7.3)

_hg' —2€%ad’ — [(hg’ —2€’ad’)’ + 4€’a’(g'h’ — €'a”)] 1z

Let g have the root x = x,. Near the true solution x of (7.3)

we can write

g'lx — Xo),
) h+h'lx —x)

where £ is small. Equation (7.4} is quadratic in x and the

solution is given by

€a + €a'lx —xo)|

Det =0, (7.4)

X — X,

2gh — €a?)

The expansion of x(¢) in the powers of € is now equiv-
alent to (2.14) and the radius of convergence can be explicitly
obtained from (7.5). In fact there are two radii for ¢; one
coming from the zero of the denominator and the other from
the zero of the function under the square root. The denomi-
nator gives for the radius

€ =la/gh’)?, (7.6)
while the square root gives
ka'
= 7.7
2lagah —ah)]'"? 7.7
and the radius of convergence for the series is
€ = min(€,,&,). (7.8)

For |h | —>0theradius ¢, is constant; however, €, goes to zero.
Therefore the perturbation expansion based on (7.4) has zero
radius of convergency, i.e., the perturbation series (2.14) is
not convergent.

Let us define / as a perturbation, in which case we have
for (7.3)

, €a+ €a'(x — x,)

, €h+h'(x —x,)

and for e—0 the problem reduces to the degenerate case.

From the solution of (7.9) we also find two radii of conver-

gence; one given by (7.6) and the other
h%g? + 4a’g'h’ ‘

4hg'’a '

In the limit ~—0 the radius ¢, is infinite, therefore the radius
of convergence for the series (5.3) is determined by (7.6) and it
is independent of 4. This fact may be of advantage for treat-
ing some cases which are strictly nondegenerate as the de-
generate ones.

Although we analyzed the simple 2 channel problem,
we see that in general it is better to reformulate the nearly
degenerate problem as being exactly degenerate, using the
transformation (7.2).

Det

lg’(x — Xo) (7.9)

(7.10)

2=

8. DEGENERATE PERTURBATION THEORY FOR
RESIDUES

In Sec. 4 we showed how to develop the perturbation
expansion for the residues in the case when the relevant poles
are not degenerate in the unperturbed Hamiltonian. Here we
will assume, as in Sec. 5, that p channels in the uncoupled
equations are degenerate in the pole k,. The notation will be
that of Sec. 5.

The residue in the oth open channel is
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(7.5)

2mi F
where the integration contour C encircles the relevant pole.
We will assume that the perturbation € destroys the degener-
acy, therefore all the poles from the cluster of p poles are
simple. Let us also, for convenience, drop all the reference to
the oth channel and write F( — k) simply as F( — K ).
By expanding £ into a series

B =PBo+ €Bi + (/2B + -, (8.2)

we find the residue in terms of the solutions of the unper-
turbed Hamiltonian. The coefficients from (8.2) are therefore

ﬁo— L§Mdk, (8.1)

g, =g d" F(=Kd 5 (8.3)
2mi Jc de™ F

where the integration is performed prior to taking the limit

€—0. This is important since if the limit €e—0 is taken first,

all the poles from the cluster become k, and the contour

integration C is then undefined.

The coefficient 3, is thus obtained as
LfﬂF(—K} _ FF(-K) dk
2mi F F? .

— lim [k — (e]] F( —K)F——ZF( —K)F’
k—iie) - F
where «(€) is given by (5.3) and the limit e—0 is implicitly
assumed. By taking the limit in (8.4) we obtain

B,=(1/F?)[F(—K)F—F(—K)F]. (8.5)

Thedeterminants F = Det(J )and F( — K )areinvariant
to the transformation (5.13), therefore the limit e—0 of (8.5)
can be proved to be zero, as in the nondegenerate case.

The second order contribution /3, is obtained from (8.3)
and we find

B,

I

(8.4)

e Feg)
B, —[F( x)-F K

= FI ’
. d FF(—K) FF(—-K)
R [ )}

(8.6)

where the limit e—0is also assumed. After taking the deriva-
tive with respect to k and then the limit k—«, we get for 3,

p.= 4 (Fi-x) - F EL2KD)

F' F’
1 F)Z[ ” ” F,(_K)]
—_|—)|F'(—K)—F" ————
A=) |F-x =
_ _2_1[13'(_1()_13"'—-—17(”"’]. 8.7)
F' F’ F’
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The problem is now to find the derivatives of F in the
limit e—0. By taking the limit in F' one finds that the domi-
nant power is €” ~ !, therefore we look for the terms in the
bracket which are of the same order of magnitude. Let us

oo

discuss calculation of F. The other derivatives are calcuated
in a similar manner. By recalling the rule for the derivative of

F,*" we findthat the dominant power in F is €? ~ 2 if we take

derivatives of the / th column and any other from the degen-
erate subset. In this case we have

co

F =26~ 2h1...hs,11...,1p

21 ;> ay; -
X,-z IDeta +0( ™), (8.8)

ey 9 ity A

where the product of A, excludes A,. The derivative F (— ko)

differs from F in replacing A, by A — ko) =h ¥.
We also find

F'(—ky)/F'=hg/h, (8.9)

therefore the terms of the order €? 2, in the first bracket in

(8.8), cancel, hence

F(—K)—F(F(=K)/F)=0("""). (8.10)

The next highest order terms in F come from two
sources: (a) taking the derivative of the / th column and any
column from the set s, (b) from (8.8) but including the terms
of the order €” ~'. However, when such derivatives are cal-
culated, we note that, when the subtraction (8.10) is done, all
the terms which do not include derivatives of the oth column
cancel. Therefore we have

e . 1 ay, a,
F ~2¢? hl---hsxll---/lp — Det
hg oy Qoo
u’ 0 aiO
1
+ a;, +0l€).
i “Tr1 Ay

Ao oy oo+ Kih g
(8.11)
Similarly we obtain derivatives ¥’ and F ". Having now
calculated the derivatives, it can be shown that

F—2a,F' +a}F"~—2p 0;1"“’ hywh Aoyd,

4]

(8.12)
and the coefficient 3, is
= (2p/hi)haga,e — hatal,), (8.13)
or if 4 is replaced by Jy
2
B.= [ y ] , 8.14
2= = | S, wrenT (8.14

which is our desired leading term in the residue. Since there
are p poles in the cluster we have p residues of type (8.14).
They differ from one another in the unitary matrix 7.
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9. CONCLUSION

In this article we have developed a perturbation theory
for Feshbach-type resonances, although this restriction is
not essential. We have also treated the problem with the p-
fold degeneracy in the unperturbed Hamiltonian, which is of
importance in atom-surface scattering, where such a case
often arises. We have also shown, on a simple case of two
channels, that when the channels are nearly degenerate in
the unperturbed Hamiltonian, the radius of convergence of
the perturbation series is greatly reduced and the series may
not converge. In other words, the nondegenerage perturba-
tion theory cannot be smoothly continued to the degenerate
one. This fact is of importance when the resonance cross
section is a function of a continuous parameter, e.g., azi-
muthal angle in the atom-surface scattering, but for some
discrete values several bound states in the closed channels of
the unperturbed Hamiltonian become degenerate.
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It is shown that in cases with spherical symmetry, a Liouville transformation leads from the wave
equation to a Schrodinger-like equation with energy-independent potential. The direct problem
can be solved by iteration and the inverse problem by the Marchenko formalism. An exactly

solvable example is given.

PACS numbers: 03.80. + r, 03.65.Nk, 02.30. + g

1. INTRODUCTION

A plane (scalar) wave of frequency @ = ck propagates
(say) in the positive direction of the z axis of a system of
coordinates and interacts with an object of finite dimensions,
characterized by an index of refraction n(r)> 1. As a result of
the interaction, a scattered wave ¥ is generated so that the
total field at a point r is of the form

Ylkor) = e + ¢, (k1) (1.1)
and satisfies everywhere the equation
AY + k*n*y=0. {1.2)

At large distances from the scatterer, ¥, is an outgoing
spherical wave:

'ps ~ A (k10’¢)

’
r—ow r

eikr

(1.3)

where A (k,0,¢ ), afunction of the spherical angles 8 and ¢ but
not of the radial coordinate » = |r|, is the scattering ampli-
tude whose modulus squared yields the scattering cross sec-
tion, a quantity directly accessible to measurement.

Simply stated, the direct scattering problem is to deter-
mine the scattering amplitude 4, when the function # (identi-
cally equal to unity outside the domain occupied by the ob-
stacle) is known. The inverse scattering problem consists of
determining the function 7 (and thereby also the shape of the
scatterer) from information regarding the scattering ampli-
tude 4.

Both problems are important, but their solutions are
unevenly developed. While the direct problem has been ex-
tensively studied, and is well understood, a comprehensive
solution of the inverse problem is yet to be developed.

To date, the most complete results regarding the inverse
scattering problem have been obtained for quantum-me-
chanical scattering by a potential ¥, when the wave function
is a solution of the Schrédinger equation:

Ay +ky=Vy, (1.4)
primarily in one dimension.'?

At first sight, it would seem that whatever results exist
concerning Eq. (1.4) carry over in the study of Eq. (1.2), since
the latter can be cast in the form of a Schrédinger equation
simply by writing

V= —kn}r—1]. (1.5)

* This work was conducted under the McDonnell Douglas Independent
Research and Development program.
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Moreover, in so doing, the problems might appear to be even
simpler because, in contrast with the situation commonly

arising in quantum mechanics, Eq. (1.2) has no bound-state
solutions [i.e., square integrable solutions which, at least for
finite-range potentials like (1.5), can correspond only to non-
positive values of k 2]. This physically obvious fact has a sim-
ple mathematical proof. Indeed, by rewriting Eq. (1.2) as

k *n*y? = (grad o)’ — div(¢ grad ¢), (1.6)

and assuming that both ¢ and its gradient are square integra-
ble, it follows that

szn2¢2d3r=f(grad ¥)*d’r, (1.7)

which clearly requires &k 2> 0. (The possibility that k> =0
implies that grad ¥=0, and also, since ¥ is assumed square
integrable, that ¥==0).

However, a closer look at the formalism developed to
solve the inverse problem in quantum mechanics reveals that
the situation concerning Eq. (1.2) is not a simple transposi-
tion of results. The main obstacle is the fact that, in contrast
with the assumption made in quantum mechanics, the po-
tential (1.5)is k dependent, in a manner that invalidates most
conclusions regarding the analytic properties of the solu-
tions of Eq. (1.4) in quantum mechanics, and that are essen-
tial in the solution of the inverse problem.

Nevertheless, it will be shown below that, at least in the
one-dimensional spherically symmetric case, the quantum
mechanical developments, both for the direct and inverse
problems, can still be carried over to the scattering by a
sphere of variable index of refraction as described by Eq.
(1.2), although not quite in the simplistic manner suggested
by the relation (1.5). The key ingredient in the procedure is a
Liouville-type transformation leading from Eq. (1.2)to a
Schrodinger-like equation with a k-independent potential,
as described in Sec. 2. The direct scattering problem is exam-
inedin Sec. 3, and the inverse problem is considered in Sec. 4.
Throughout the paper, the procedure is illustrated by a spe-
cific example. The portions of the text referring to this exam-
ple are marked with a vertical line.

2. LIOUVILLE TRANSFORMATION

If it is known that n depends only on the radial variable
r, Eq. (1.2) separates in spherical coordinates and for the
radial dependence of the solution one obtains the reduced
equation
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d>  1(i+1)

a7
The so-called physical solution of this equation is a solution
regular in the origin 7 = 0, and which asymptotically be-
haves like

u(r) ~ & sin(kr — %ﬂ + 5,) , (2.2)

r—oo

+ kznz(r)] u,(r)=0. (2.1)

where &§,(k ) are the scattering phase shifts. Correspondingly,
the scattering amplitude is

A (k) =% S @1+ 1)esind Plcos 6).  (2.3)
I=0

Rather than investigating the solutions of Eq. (2.1) directly,
one subjects it first to the simultaneous change of variable
and function (the Liouville transformation®):

r—piplr) =J nis)ds, (2.4)
(4]
u—yP:apy(p) = (a(r)"/? u,fr). (2.3)
Note that
p(0)=0 (2.6)
and that, if r, is the radius of the sphere outside which n=1,
pir=py+r—r, forrer,, 2.7
where
Po= f " nis) ds. (2.8)
(4]
Also,
plr) ~ n(0)r. (2.9)
The transformation (2.4) can of course be inverted:
? ds
Hpl={| —, 2.10)
o V(s)
where
v p) = nir p)) . (2.11)

Applying the transformation (2.4)—(2.5) to the Eq. (2.1), one
obtains

d> i+

[ R S +k]¢,<p) VipWip),  (212)
where

R(p)=vp)rip) (2.13)
and

V(p)=[v(p)r”2d [ p)]"2 (2.14)

for the validity of which 1t is required that v{ p} be twice
differentiable.

It is important to note that the potential ¥ { p) vanishes
for p > p,. It will also be assumed to be bounded everywhere.

The Schrodinger-like Eq. (2.12) with the k-independent
potential (2.14) constitutes the starting point of all consider-
ations to follow. The only difference between Eq. (2.12) and
the usual Schrédinger equation consists in the form of the
centrifugal potential which is given in terms of the distance

2141 J. Math. Phys., Vol. 23, No. 11, November 1982

(2.13) rather than simply p. Note, however, that

R(p)=p+ro—po forp>p, (2.15)
and that
R(p) ~ p (2.16)

if, as we assume, v( p) and its first derivative are everywhere
continuous.

To illustrate the general formalism, the special case of a
sphere of radius r, and an index of refraction

i

rzry
will be treated throughout the paper. In (2.17), y* is an arbi-
trary parameter except for the restriction

(2.17)

0<y*<l. (2.18)
In this case, (2.4) yields
o 1 . r—r
+ —= tanh —2 0Lrgry,
pn=17°"% _— AT
r+po—ry 1<t
with
po=plro) = ro/7) tanh ™y . (2.20
Given (2.19), the inverse transformation is
Ty 4
7o+ —=tanh < p — 0<p<po)s
Hp) = o Y rO(P Po)  (0<p<po) (2.21)
P+To—po (po<p)
and
cosh? l( - 0<p<py)
vip) = o PP (0<p<pd) (2.22)
1 {po<p) .
Finally, in this case, from (2.14)
/rs (0< ,
Vip)= v/ (0<p<pl (2.23)
0 (Po<p).
3. THE DIRECT PROBLEM

In the direct problem the objective is to determine the
phase shifts §,(k )(/ = 0,1,2, - ), and hence the scattering
amplitude {2.3), when the scatterer, i.e., the function n(r), is
known. As indicated, one way to proceed is to find the phys-
ical solution of Eq. (2.12) and examine its asymptotic form to
identify the phase shifts. A related solution the so-called re-
gular solution, will be sought initially. This solution of Eq.
(2.12) is defined through its behavior in the origin, which is
prescribed to be

I+1

P
¢i(p) ~ '(21+—1)" (3.1

To construct this solution, one customarily writes for ¢,
an integral equation, the solution of which satisfies both Eq.
(2.12) and the condition {3.1). Equation (2.12) is transcribed
in the form

2
Gk sl =Vilp 4o 62)
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where

1 1
Viip)=V(p)—1{ 1[—— ], 3.3
i p) (p)—1(+1) 2 Rp) (3.3)
and the Green’s function
. |&ilkpp’), p'<p,
Gilkpp') = [ ’ , (3.4)
0, p>p

is introduced, where
gilkpp’) =4 i( — 1) kpp'
X [2{) (kp)-h P (— kp')
—h{ (kp'yh {1 (= kp)] - (3.5)
The integral equation for the regular solution is thus
éi(kp) = pk ~ ' jy(kp)
0
+ [ alkpo Vs 0tk 36

in which the free term is a solution of Eq. {3.2) without the
potential ¥,, and which has the behavior (3.1).

Equation (3.6), however, need not be solved for all p.
Indeed, if one introduces the notation

¢1(kp) (0<p<po)
Ik’ =
Pller] [¢f’(k,p> (Po<P)

and remembers that ¥ { p) = 0 for p > p,, one can write for
¢ 1" (k,p) the equation

(d_z_ 1{{+1)
dP2 (p—po+ r0)2

(3.7)

+k7) 81 p) =0 (p3pol,
(3.8)
the most general solution of which is
¢ 1" (kp) =4, rj,(kr) + B, ry,(kr), (3.9)

where r stands for p — p, + 7, the expression of r{ p) for
p>po- The constants 4, and B, are to be found by matching
¢ 1 (and its first derivative) with ¢ / (and its first derivative) at
p = pq, after Eq. (3.6) has been solved for p<p,. The expres-
sion (3.9) also yields the asymptotic form of the regular solu-
tion:

1 . !
blkp) ~ [ 4;sin (ir - T)

— B, cos (kr - l—”)}
2

= C, sin (kr—%r—i»-é,), (3.10)
where
tan 8, = — B,/A, (3.11)
and
C,=(1/k)[Af+Bf]”2. (3.12)

The existence of a unique solution ¢ | (k,p) of Eq. (3.6) for
p<p, follows from standard arguments,* and requires that
the potential V,( p) satisfy the condition

"Po
L dpp|Vi(p)l < oo .

This condition is easily seen to be fulfilled in the present case,

(3.13)
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since V'{ p} is, by assumption, bounded and
1 1 _ro1

P> R*p) e n(0) p

The fact that the same notation for phase shifts has been
used in (3.10) asin (2.2) and (2.3) requires an explanation. The
phase shifts §, defined by (3.11) are nor the phase shifts of the
quantum mechanical scattering problem. Indeed, the latter
are defined through the asymptotic form of the physical so-
Iution for this problem

(3.14)

ilkp) ~ esin(kp —4im+5,) .

prw
Since ¢,( p) is also regular, and a regular solution is essential-
ly unique, it follows that

hilkp) = C, ' e 8, kp)

(3.15)

(3.16)
and
Sik)=8/k)—k(po—ro). (3.17)

Up to this point, neither 8, [as defined in (3.10)—(3.11)] nor 8,
[as defined in (3.16)—(3.17)] have been given any physical
meaning. The quantum mechanical problem described by
Eq. (3.2) is, in this context, only an auxiliary mathematical
tool: no experiments can be carried out in the space in which
p is the radial distance. However, the regular and physical
solutions of the real problem, described by Eq. {2.1), can be
found easily by inverting the Liouville transformation (2.4)
and (2.5). Indeed, the regular solution v,(k,r) of Eq. (2.1),
which is defined through the behavior in the origin r = 0,

rl+ 1
v, (k,r) =~ ST (3.18)
is
vi(k,r) = [n(N] 72 [n(0)] ~ V=2 4y (kplr),  (3.19)
while the physical solution of Eq. (2.1) is
u (k)= C " [n(0))'* 2 ™ vy (kyplr) (3.20)

and has the asymptotic form (2.2). This relation identifies §,
as the real phase shifts of the problem and justifies the use of
the same notation in (2.2) and (3.10). The relation (3.17) still
warrants additional comments, which will evolve from the
ensuing discussion of the Jost solution. For Eq. (2.12), this
solution is defined through the boundary condition

f;(k’p)p:w ei(kp+lfr/2) (k ;60) . (321)

The integral equation incorporating this condition is

Silk,p) = w,(up) — fm &ilkpp'}Vilp') filkp')dp’,
’ (3.22)
where

w,(kp) = ie™ kp-h 1 (kp), (3.23)

and is a solution of Eq. (2.12) without the potential term,
satisfying (3.21).

Again, Eq. (3.22) need not be solved for all p. If one
writes
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fikp)  (0<p<po)
kp)=1"" (3.24)
Fike) [f/(kp) (po<p)
one sees that
I (kp) = i kr-h \V(kr)-e™* #o =" (3.25)

withr = p — p, + 7o, the expression of A p) for p>p,. To find
f,k,p), one needs only to solve Eq. (3.22) for f7 (k,p),

f1k, p) =1 (kypo) + w,(kp) — w;(kpo)
~ [ stk Vil o111 o) do . (326

The existence of a unique solution of Eq. (3.26) again follows
if

Po

f PV p)eltm I —Imirdp' < o (3.27)

(¢}
a condition which is indeed fulfilled if Im k>0 since (3.13)
holds. It should also be noted that (3.13) holds not only for
the first moment of the potential, but a fortiori for any higher
moment. One can thus conclude that f; (ko) exists for all
p>0andall k #0in the upper k half-plane, where it is also
analytic. As |k |— o in this region, f;(k,p) behaves like

Silkp) ~ (p>0).
[k {—ee

The Jost solution # ,(k,r) for the Eq. (2.1), defined through
the asymptotic condition

gllke + In/2 (3.28)

/l(k,r) ~ ei(kr— Ir/2) , (3.29)
can be easily constructed:

Lk = [n(r)] =2 filk,p(r)) e = *(Fo=rel. (3.30)
However, as |k |~ in Im k> 0 with 7> 0,

Filkr) ~ [n(R] =2 e*lAnmpot ] (3.31)

|k |—c0

It follows thus that, since

Po—To= f [n(s) — 1] ds>0, (3.32)

0

the Jost solution for the Eq. (2.1) does not have a domain of
analyticity in the k plane independent of ». As will become
clear in the following section, this circumstance is basically
the reason for the failure of the direct application of the
quantum mechanical inverse scattering formalism to Eq.
(2.1).

Finally, the Jost function for the Eq. (2.12), defined as
the Wronskian

Fik)=(=kY W{ filkp)p:kp)} (3.33)
can be evaluated by substituting for f; and ¢, their asympto-
tic {k #0, p— o} expressions:

Fi(k)= |F (k)"
with

|Filk)|=k'*1C,.

The integral representation

(3.34)

(3.35)

Fik)=1+( ~k)’f0°° wikolV,(p) $ulkp)dp  (3.36)
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yields the bound
Filk)—1 <cr———p Vi p)lelimkl~1mkio g
|Fi(k)~1] A 1+Ik|pll(p)l p
(3.37)

which in turn shows, since

IVz(p)Ip: o(p~?), (3.38)
that

’kllim Filk)=1 (Imk>0), (3.39)
i.e. (modulo 27),

lim 8,(k)=0 (k real). (3.40)

k—eo

This is a physically natural circumstance in quantum
mechanics: as the energy of the incident beam increases, the
effect of the force represented by the (energy-independent)
potential weakens, and in the limit k— o, the presence of
such a force is totally ignored, and the incident beam is no
longer scattered. The relation (3.17) shows, however, that
this is no longer the case for the scattering described by Eq.
(2.1)or(1.2). Indeed, as k— 0, 8,(k ) increases (linearly). This
is clearly due to the fact that, for the problem described by
Eq. (1.2}, as k increases, the force represented by the poten-
tial (1.5) also increases, and the incident wave never escapes
the effects of the force.

In any event, it is worth emphasizing that one can still
obtain solutions to Eq. {2.1) by iterations, provided these are
conducted on equations like (3.6) or {3.22) for which they are
guaranteed to converge.

Forl = 0, the special case given by (2.17) is exactly solv-
able. In this case,

a~'sinap (0< p< po)
ko) = { _ ’ 3.41

dolkp) Cosinfkr + 8y)  (po<p)s ( )
where

at=k>— /R (3.42)
and

Co = [k 72 cos® ap, + a~* sin’ap,) /2, (3.43)

tan 8, = k tan ap, — « tan kr, (3.44)

k tan ap, tan kry + a

From the last expression, one can check directly that

Solk) ~ k(po—ro). (3.45)
The physical solution is

Yolkip) = Cg ' e® gylk,p) (3.46)
with C, given by (3.43) and 8, by (3.17) and (3.44):

8o = tan~}((k /a) tanap,) — kp, . (3.47)

Again, one can check directly that §, vanishes in the limit
k— o, like k ~ .

The Jost solution is
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eikPn [Cosa(p— )+(1k/a) Sina(P"p )]
ﬁ)(k)p) = eikp po '

and the Jost function is

Fylk )= €™ (cos ap, — (ik /a) sin ap) . (3.49)

The corresponding exact solutions of the equation (2.1) for
/ = 0 can be found from (3.19), (3.20), and (3.30), by using
(2.19).

For ] #0, the problem is no longer exactly solvable but,
as mentioned above, it still can be solved by iteration.

4. THE INVERSE PROBLEM

In this problem it is assumed that it is known that the
scatterer has the shape of a sphere with a radially distributed
index of refraction, but neither its radius 7, nor the function
n(r) is given. What is assumed given is some information
regarding the scattering amplitude 4 (k,8 }, and this informa-
tion need not be total: one can assume that 4 (k,f) is known
only at one particular value of k¥ for all values of 8, which
implies that all phase shifts §, (k )(/ = 0,1, --- Jare known for a
fixed k, or one can assume that one phase shift §,(k ) is known
for all values of k. Only the latter assumption will be dis-
cussed in this paper.

The assumption that one §,(k ) is known refers to one of
the phase shifts defined in (2.2). In the quantum mechanical
formalism, the corresponding phase shift &,(k ), as shown in
the previous section, can be calculated from the formula

S,k )=8,(k) —k lim [s7'8,(s)] -

S+ oG

{4.1)

Since excellent comprehensive descriptions' of the in-
verse scattering problem in Quantum Mechanics exist, only
asummary of the salient points will be given here. Moreover,
the approach proposed by Karlsson® will be adopted, since it
emphasizes the analytic properties of Jost’s solution in the
complex k plane.

One begins by using the differential equation satisfied
by the functions kpj,(kp) and w,(kp) to show that

[ wtkorsii e
p

d ..o e d
w,(kp) s [k piilk’p)] — K piilk p) s w;(kp)

= 5

k' — (k + i€
(4.2)
and then considers the integral
€z - 1 ! 1 ?
e
mi Jc
(4.3)

x [~ dotwithe Ve pitk o)

P
where the closed contour of integration, C, consists of the
real axis and a semicircle of indefinitely large radius in the

upper half-plane. The integral (4.3) is evaluated in two differ-
ent ways.
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(3.48)

First, because the integrand is an analytic function in
the upper half-plane, except for a pole at k + /¢, the theorem
of residues can be employed. Since at his pole the numerator
in (4.2) becomes a Wronskian, one obtains immediately the
result

Fikp) = filkp) . (4.4)

Second, the contributions from the real axis and semi-
circular portions of C are separated, viz.

Flkp)=F (kp)+ F P (kp), (4.5)
and these contributions are evaluated separately. Because
kpjitkp) = (i/2) [wi( — kp) — (= W w,(kp)],  (4.6)
the contribution of the real axis portion can be written as
1 0
F ko) = [T ae
r J_ .,
X[ fil=k' p)— (= 1) filk'p)]
X[ dot koo )
P

Using the relation between the Jost solution and the physical
solution,'

k) = (i/2) [ fi( — k) — (— 1) €216 fikp)]
(4.8)

(4.7)

one obtains
F (k) = - f i’ [ 1] £k p)

27 J -

X [ dot wiike otk p)
o
( —— 1)1 . ' ’

+— dk 'Y,k "p)

moJ_ .

x| dpwthp otk o).
’ (4.9)

Because the integrand of the term containing the physical
solution is an entire function of k ’ (there are no bound states
in this problem), this integral equals its negative evaluated
along the semicircle portion of C. Thus it can be combined
with . and evaluated by using the asymptotic forms of the
solutions for large k in Im k0. The combined result is
w,{kp). Thus, the integral equation

1
Silkp) = w (kp) + —
27
x| ak [ 1] Stk
x| dptwllp o ), (4.10)
P
is obtained which, in principle, solves the inverse scattering
quantum mechanical problem: given §,(k ), one solves Eq.
(4.10) for the Jost solution f;(k,p) which, when substituted in
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Eq. (3.2), allows immediate identification of the potential
Vilp)

However, Eq. (4.10) has the unpleasant feature of being
singular, a circumstance which, when possible, is preferably
avoided. In the present case, it can be avoided by recasting
the solution according to the so-called Marchenko formula-
tion. By introducing the function

Ao == [ [ftko) - witkp ko ko) i
(4.11)
and taking into account the bounds
|itkp) — wilkpll <€ (LEELLY ¢ ptme,
le (4.12)
|kaj,(ka)| <e” '™,
one recognizes that
A(p0)=0 forp>o. (4.13)
The integral representation
ftkp) = wilbkp) + [~ A pohoilko) do (4.14)

{4
is obtained by taking the Hankel transform of Eq. {4.11).
Substitution of this representation in Eq. (4.10) yields the
Marchenko equation

A p0) = B/( po) + f dr A pBy(ro),  (4.15)
where
1 bl 25 k)
B,(p,a>=—~f dk [~ 1) w,lkphoy ko)
2m J_ »
(4.16)

The last step in the solution consists of establishing a
connection between 4,( p,0) and the potential V;( p). This
step can be done directly by substituting the integral repre-
sentation (4.14) in the integral equation (3.22) satisfied by the
Jost solution. For / = 0, one obtains the integral equation

Aol p,0) = LJ‘ Vo) dr + J dar
2 Jp+an2 (p+o)2
(o — p)/2
XJ Voo — w)dylo — w,0 + o) do (0> p) ,
° (4.17)
which yields the simple relation
d
Volp) = —2-2 4 pp). (4.18)
dp

Forl #0, the equation corresponding to Eq. (4.17) still can be
found, but it has a considerably more complicated expres-
sion (for / = 0 the Hankel transform reduces to a Fourier
transform). Nevertheless, one still can show that, for p = o,
this relation simplifies drastically and yields, for any /, the
result

d

Vip)= —2- d,(pp). (4.19)
dp

A simple derivation of this result was given by Blazek.®
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In the Marchenko formulation, solution of the quan-
tum mechanical inverse problem proceeds as follows: given
&,(k ), one first evaluates the integral (4.16) and then solves
the Volterra-type Marchenko equation (4.15). Finally, the
potential ¥;( p) is calculated from (4.19).

Solving the quantum mechanical problem does not yet
solve the problem under consideration; one still must find
n{r)froma given ¥,( p). For!/ = Oand V,( p) = V(p), ¥{ p)can
be found by solving the equation

2
5;2—#(/7)— Vel (p)=0, ulp)=[vp)]'"?, (420

which is, in principle, manageable. However, for arbitrary /,
viewed as an equation for v{ p), Eq. (3.3) has a formidable
aspect. Not only is it integrodifferential, it is also strongly
nonlinear. Nothing is known at the present time about
whether, given V,{ p), Eq. (3.3) has a solution, whether it is
unique, or, as it should be independent of /. But even if the
answers to such questions were favorable in all respects, one
would still have to construct the solution. To this end, the
customary approach is by iteration, and one could think of at
least two such procedures. One procedure would start from
the origin p = 0, assuming that in the first approximation

RV (p)=p forallp>0. (4.21)
Equation (3.3) then becomes
2
|2~ Vitpl] o0 =0 4.22)
dp

and, with the condition v\ p)—1 as p— w0, yields ¥{ p) in the
first approximation. Hence, via Eq. (2.13), one obtains the
second approximation for R ( p):

@ o) — D ? ds
R®p) =) | s

and the process is repeated.

Another procedure would start from large values of p,
for which itis known that ¥ { p) = 0. To a first approximation
one would take then

VW(p)=0 forallp0. (4.24)

With given V,{ p), Eq. (3.3) would yield, thus, a first approxi-
mation R "/ p). Substitution of this approximation in the re-
lation [derived immediately below, Eq. (4.27)]

v?(p) = exp [ — J:Q % ds}

leads, via Eq. (2.14), to the next approximation for V' ( p), and
the process is repeated. Naturally, one would need to show
that such iterations are convergent.

The construction problem could be significantly simpli-
fied if the potential V,( p) were to be determined for two
values of /, rather than just one. In this case, writing Eq. (3.3)
for each /, and subtracting, results in an immediate deter-
mination of the function R ( p). Knowledge of R ( p) directly
implies knowledge of v( p). Indeed, differentiating (2.13) and
taking into account (2.11) yields the equation

v _R'—1

v R

(4.23)

(4.25)

lim v(p) = 1] , (4.26)

C. Eftimiu 2145



the solution of which is

v(p)—exp{ f Rl(g)(;lds].

Suppose, for example, that 8,(k ) is given for / = J by
(3.47), with unspecified physical meaning of the parameters
kr,, ko, and 7°. Then, the integral (4.16), which for / =0
reads

(4.27)

By p,0) = %f dk [e2%%) 1] %P+ (4.28)

[needs to be calculated first. This calculation can be done by
expanding the integrand in powers of % and finding B, in the
|form of a series:

BO( P’Uﬂ’z) = 0( P:S'O) + },2
B ] 429
a P ol £:0377) . + (4.29)
One obtains successively
By p,o;0)=0 {4.30)
and
d
[W By ,0,0';7’2)]
= —f k (sm 2kp, — 2kpyle’ et
p )9( —p+") 431
=5 (= 257)o(m-257). (4.31)

where 0 (x) is the Heaviside step function. In fact, the entire
reries can be generated and its sum found:

A, _ptoy & (=1
By p.osy* )—,%(PO 2 )Zo nln + 2)!

[T (o=t o (e -557)
=[4(Po—”;”’)]“'
sz([ 22

<o (e

) (4.32)

2146 J. Math. Phys., Vol. 23, No. 11, November 1982

The solution to the Marchenko equation (4.15) now can
be found, again by seeking it in the form of a power series in

1’2:
°(p’a)_%n_o( (,)"+ n!(nl-{— 1) (a;p)n

“(m=tg) o(m-237)
=L[Po—(P+‘7)/2]m
(o P)/2 s
(G52 (e-e3)])
XG(po—p;a).
(4.33)
Finally, from (4.18) one gets
Volp) = V(p) = (r/r5) 6(po—p), (4.34)

which identifies p, as the value of p beyond which the poten-
tial vanishes.
From Eq. (4.20}, for p > p,, with the condition that

hm u( p) = 1, one obtains u( p)=1. For 0< p< p,, the solu-

tion of (4.20) can be found easily and matched at p = p, (to-
gether with its derivative) with the solution found forp > p,.
The final answer is Eq. (2.22), as expected. Equation (2.10)
determines 7{ p), including r, = r{ p,) which now is identified
as the radius of the sphere. Inverting A p), one finally finds

n(r) = v p(r)), Eq. (2.17).
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It is proved that the combined gravitational-neutrino equations in general relativity admit no
nontrivial solutions in a static space-time provided that the energy density of the neutrino field is

nonnull for all observers.

PACS numbers: 04.20.Cv

I. INTRODUCTION

In general relativity and in classical field theory a neu-
trino field interacting with a gravitational field is represent-
ed by a two-spinor £ # which satisfies the generalized Weyl
equation

€%, =0, (1.1)
and the Einstein gravitational equations

R,=-T,, (1.2)

where 0“ ;; are the generalized Pauli matrices and 7, is the
neutrino energy momentum tensor.

A fruitful manner to treat the above equations is to
complete £ * with a spinor y* in such a way that (£ 4,y ) form
a spinor frame. This spinor frame gives rise to a null tetrad
(1#,k*,m",m*) as follows:

I* = o* & EF, (1.32)
k* = o 5 x" Y%, (1.3b)
m* = a* i &Y%, (1.3¢)
= o* gy EX. (1.3d)

The vector /* is interpreted as the neutrino flux vector.

For a given neutrino field £ # the null tetrad
(I#,k*,m*,m") is not uniquely determined; we can perform a
“null rotation about /#** expressed by the formulas

14 =1" (1.4a)
k#=k"™ 4+ Wm™ + Wm* + W1 *#, (1.4b)
mt=m'* 4+ Wl (1.4c)

In terms of the spin coefficients associated with the null
tetrad' the Weyl equation takes the equivalent form?:

p=E¢, (1.5a)
B=r. (1.5b)

Furthermore, if we will suppose that the neutrino field is of
class E,, we can prove? the existence of a null tetrad with
respect to which the neutrino energy-momentum tensor as-
sumes the form

T[AV = - %{Al,ulv + 2w[gy.v - 2(1;.Lkv + Ivk;t)]
+ 2i(@m,m, — om,m,)}, (1.6)
with the following restrictions on the spin coefficients:
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k =0, (1.7)

a—27=0, : (1.8)

40* — 03>0. (1.9)
The quantities A and o are defined by

A =2y — ), (1.10)

o ={i/2)(p —p)- {1.11)

If in particular,
4¢0° — 05 =0,

then we can perform the null rotation (1.4a)—(1.4c) with the
function ¥ restricted by the equation
0¥ — iG¥ =0, (1.12)
and give to the real part of ¥ any convenient value.
The components of the Einstein field equations with
respect to the null tetrad can be written®

Doy =0, (1.13a)
®,, =0, (1.13b)
®,, = (i/4)0, (1.13¢)
®,, = lo, (1.13d)
®,,=0, (1.13¢)
@, = — A (1.13f)

Il. THE NEUTRINO FIELD IN A STATIC SPACE-TIME

Static space-time is characterized by the existence of a
timelike hypersurface orthogonal Killing vector field n*,
that is

n*n, >0, (2.1)
Z 8y =0, (2.2)
nn,, +n.n,, +n,n,.,=0. (2.3)

From these equations it follows that #* is an eigenvector of
the Ricci tensor R,,, and consequently by virtue of the Ein-
stein field equations (1.2) we must have

Tﬂvn" =¢n,. (2.4)

As in this paper we consider a static space-time generated by
a neutrino field of class E, we can prove* that from (2.2) it
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follows that

LA*=0, (2.5a)
Lkt =0, (2.5b)
&L mt = — ismH, {2.5¢)

where s is a real constant.

To exploit the Egs. (2.1), {2.3), (2.4), and (2.5a)-(2.5¢) we
need to expand n* in terms of the null tetrad

nt* =al* 4+ bk* — cm* — Ttm*, (2.6)

where a, b are real, and ¢ complex.
Now the Eqgs. (2.1), (2.4), (2.5a)-(2.5¢) and {2.3) can be
written equivalently

ab —cc>0, (2.7)
2w —-2¢)a—bA =0, (2.8a)
(@—24)b=0, (2.8b)
lw+2¢)c—ico =0, {2.8¢)
b,u = (Iv;u - lu;v)”v’ (2.9a)
a, =k, —k,,)n% (2.9b)
¢, =m,, —m, )n"—ism,, (2.9¢)
cAb + bba — abb + antm*l,., — bn*mk,., —cn"k ¥l
=0, (2.10a)
b6¢ — ¢5b + cbb — bntm’m,, —cn*m*l,, +cn'm’l,,,
=0, {2.10b)
cba — abc — ¢ba + an"m*m,,, — cn*m¥k,,, + cntmk,,,
=0, (2.10c¢)

where A, 8, and 4 are the intrinsic derivatives associated with
the null tetrad.’

From (2.7} it is clear that we must have a#0 and b #0
and therefore the system (2.8a)—(2.8¢) is equivalent to the
system

26 = o, (2.11a)
r=1 (2.11b)
2wc — ioc = 0. (2.11¢)

Also, from (1.9}, (2.11b) and the form (1.6) of the energy-
momentum tensor, it is clear that if p — p = O then the neu-
trino field reduces to a ghost field. As it is known® these fields
are allowed by static space-time configurations, but in the
present paper they are not considered. So, we assume

p—P#0.

In the next section we give the proof of the following
theorem which appears as a generalization of a theorem
proved by Wainwright.’

Theorem: There are no nontrivial solutions of the Ein-
stein—-Weyl equations in a static space-time for a neutrino
field of class E,.

For convenience, in the remainder of the paper the re-
strictions (1.5a), (1.5b), (1.7), (1.8), (2.7), (2.11b), {2.12), and
the Einstein equations (2.13a)—{2.13f) will be used without
explicit reference. For the Ricci and Bianchi identities we
will adopt a special reference notation, e.g., by (2.R) [respec-
tively, (2.B)] we mean the second Ricci identity (respectively,

(2.12)
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the second Bianchi identity) in the listing given by Pirani® or
by Flaherty.®

lii. PROOF OF THE THEOREM

First, from (2.11c) we observe that if 402 — 07 > 0 the
quantity ¢ vanishes. But this can also be achieved if
40 — 07 = 0. In fact, in this case, we can perform the null
rotation (1.4a)}(1.4c) with the function ¥ restricted by (1.12).
In the new null tetrad (/ *#,k *#,m’* jm'#) the Killing vector n*
can be expanded as follows:

B ' ——
nf=al*4+ b’k —c'm* —-mH,

where the components a’, b, ¢’ are related to g, b, c, by

@ =a+b¥¥_—c¥ ¢y, (3.1a)
¢ =c—bW. (3.1¢)

Now if ¢ 20, we choose

Re¥ = (1/b)Rec,
and then, from (1.12), (2.11c) and (3.1c) it follows that ¢’ = 0.
Therefore, in all cases we can set

c=0, {3.2)

and assume that the null tetrad is uniquely determined. In-
troducing (3.2) into Eq. (2.9¢) we obtain

F+7=0, (3.3)
ao = bA, (3.4)
ap — bji = is. (3.5)

Also, by virtue of (3.2} Egs. (2.10a)-(2.10c) become

béa — abb + 2abk*m*l,, =0,

rm'm,, =0.
These two equations with the help of (2.9a)—(2.9b), (3.3) and
the formulas given in the appendix yield

v =0, (3.6)

ap = bjs. 3.7

For the calculations which follow it will be helpful if we
notice that by virtue of (3.4) and (3.7) the quantities Ac and
pi arereal. Also, instead of (3.5) we consider in our proof the
equation

alp—p)= —1is (3.8)

which follows from (3.5) and (3.7).
Equations (2.92) and (2.9b} with the help of (3.2), (3.3),
and (3.6) can be written in the form

Da =2yb, (3.9a)
Ada = — 2ya, (3.9b)
ba = —4ra, {3.9¢)
Db ={p + p)b, (3.10a)
4db= —(p+pa, (3.10b)
8b = 27b. (3.10c)

For convenience, in addition to the conventions adopt-
ed at the end of Sec. 11, we agree that in the sequel Eqgs. (3.3),
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(3.4), (3.6)(3.8), (3-92)—(3.9¢), and (3.10a}—(3.10c) will also be
used without explicit reference.

To obtain further restrictions on the spin coefficients
and the components of the Weyl conformal tensor we are
forced to consider the integrability conditions of the Eqgs.
(3.4), (3.7), and (3.8) in conjunction with the Ricci and Bian-
chi identities. So, we will proceed by first examining integra-
bility conditions of the Eq. (3.8), namely, its D, §, and 4
derivatives.

By D differentiation of (3.8) and the help of (1.R) we
obtain

y+u+iag=0. (3.11)
From (3.R), (4.R), and (5.R) we derive

8(p—p)=4r1p—p) 29, (3.12)
and so, the § derivative of {3.8) yields

v, =0. (3.13)
Also, from (6.R}) we derive

Alp—p)=2Mp—p)+ T~ ¥, (3.14)
and so, the A derivative of (3.8) yields

v, =V, (3.15)

By taking into account (3.11) and (3.15) we obtain from
(12.R)
T=QRu—-plp—Aoc+1T— ¥, + Py, (3.16)
and hence, (8.R) and (17.R) can be written, respectively,
Du=(p-—3u)p+2ic+ 17— @D, +2¥, (3.17)
Ap= —pu —3pip— 240 — 717+ D, —2¥,. (3.18)

Substituting (3.18) into (6.R) and taking into account (3.11)
we obtain

Dy = dpu — 240 — 277 + 20, — ¥, (3.19)

By D differentiation of (3.11) and the help of (3.15), (3.17),
and (3.19) we derive

3, =(p—plp —p)— 240 (3.20)

Let us now consider the integrability conditions of Eq.
(3.4). At first, by D differentiation of (3.4) and the help of
(2.R) we obtain

DAi=(p—3p) A+ (a/b)¥, (3.21)
and then, this equation with (7.R), (16.R), and (3.11) gives
do= —2u+plo—(a/b)¥,. (3.22)

With the help of (3.22), (3.11), and the Ricci identity (10.R)
which by virtue of (3.11) can be written

Al =(p+pi-¥Y, (3.23)
the A differentiation of (3.4) yields
(@/b)¥, = (b/a)¥,. (3.24)

the imaginary parts of (1.R) and (3.17) can be written,
respectively,

D(p—p)=2p+plp~—p)
D(p—p)= —(p+p)p—4a

By virtue of these two equations and Eqgs. (2.R) and (3.21) the
D derivative of (3.20) becomes
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3IDY, = 3(p +p)¥, — 24 W, + A¥,). (3.25)

The substitution of {3.25) into (3.B) with the help of (3.13),
(3.15) and (9.B) gives

AWy = — 3%, — 225 + pIPy, + 5Pn. (3.26)
From (3.R), (5.R), (11.R), and the help of (3.13) we obtain

b0 = 4o7. (3.27)
By virtue of this equation the & derivative of (3.4) yields

SA = —24r. (3.28)

Acting on p with the commutator of the D and §-derivative
operators® and using (1.R)-(5.R), (3.13), and (3.27) we find

Abo = 4hor — (a/b)¥,T. (3.29)
As by virtue of (3.13) Eq. (3.12) becomes

S(p—p)=4p—p, (3.30)
it follows that

S(p—fg)= —2Ap—m@r. (3.31)

Now, by virtue of (3.28)—(3.31) the § derivative of (3.20) can
be written

36¥, = 6¥,r + 2{a/b)¥,T. (3.32)
From (9.R), (15.R), and (18.R) we derive

Ar =0, (3.33)

¥,=0, (3.34)

and then by substitution of (3.32) into (4.B) and taking into
account (3.13), (3.30), (3.34), and (10.B) we obtain
2(a/b)W,T = 3(¥, — 2@, )7 + 3D,,T. (3.35)
By D differentiation of (3.7) and the help of (3.11), (3.17),
(3.20), and (1.R) we find
3D, =pu +pit + pu — Ao + 377 (3.36)

By virtue of (3.14), (3.15), (3.22)~(3.24), (3.26), and {14.R) the
4 derivative of (3.20) can be written in the form

AV, = —(u +3)3¥, +4D,)). (3.37)

Let us write down the imaginary part of Eq. (3.26):
AW — A Wy = (p—PN3%¥, + 29,,) + 20P,.

Then, taking the 4 derivative of this equation and using
(2.R), (2.B), (3.13)—(3.15), (3.11), (3.22)—(3.24), (3.26), and
(3.37) we obtain

(i/4)AW, + A W) =2( 1 + T)5Ps,
+ (pu — p)3¥, + 109,,).(3.38)
But as from (3.20) and (3.26) it follows that
(i/4)AW, + A W) =2 + B)5Py, + 2 PE — pu)P,,
+(3/16)( p* — 5°)
finally Eq. (3.38) yields
(p+ D%, + 40, + (1/16)b /a)) = 0. (3.39)

Here, we are forced to consider two cases, i.e.,p +p =0
(nonexpanding case) or p + p#0 (expanding case). We will
show that both cases contradict the assumption (2.12).
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A. Nonexpanding case

We consider the case where

p+p=0. (3.40)
Then, from (1.R) follows

p’+05=0, (3.41)

Dp=0. (3.42)
Equation (3.41) can be written equivalently in the form

pu = Ao. (3.43)

By virtue of (3.40) and (3.43) Egs. (3.20), (3.36), and (3.26)
become

39, = 2pu, (3.44)
3P, = —2pu + 377, (3.45)
A¥,=p(3%, + ). (3.46)

Also, from (3.R)—(5.R), and the help of (3.13) and (3.40) we

derive
pT =0T (3.47)

By taking into account (3.40), (3.42), (2.R), (3.R), and (3.13)
the D derivative of (3.47) yields

¥, 7=0. (3.48)
Now, if

7#0, (3.49)
then,

¥,=0,
and so, from (3.44)—(3.46} it follows that

3r7= — 4a/b)pp,
which is in contradiction to (2.7) and (3.49).

On the other hand, if

7=0, (3.50)
then, from (3.16), (3.40), (3.43)—(3.45) we derive

pu=0.
But by virtue of (3.7) this equation leads to

p=0.

which contradicts (2.12).

|

B. Expanding case
We consider the case where

p+p#0. (3.51)
Hence, from (3.39) it follows that
¥, + 49, + Lib/a)=0. (3.52)

By & differentiation of this equation and the help of (3.30),
(3.32), and (3.35) we obtain
(29,, + &(b /a))T + Py, 7T =0. (3.53)

By 4 differentiation of (3.53) and the help of (3.11), (3.14),
(3.15), (3.22), and (3.33) we obtain

Ap +p)r= —ila/b)¥,7. (3.54)
From (3.35), (3.52)—(3.54) we derive

i p +p) — 4i29P,, + (1/16)(b /a))] = O,
and then, by virtue of (3.51)

7=0. (3.55)
The substitution of (3.55) into (3.16) leads to

PL=20u—Ac+ D, — W, (3.56)

But, as by virtue of (3.15) the right-hand side of (3.56) is real,
we have
P = pp,
or, by virtue of (3.7)
p=p"
But, clearly, this last equation is in contradiction to (2.12)

and (3.51).
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APPENDIX

For convenience, we list the expansions of /,, ,%,,.,, and
m,,.,, on the null tetrad.

., =(e+8lk, —km,k, —km,k, +(y+pl,1, —rm,l, —7m,l,
—(@+ B, m, —(a+B)M,m, +pm,m, +pm,i, + om,m, +&m,m,,

{7

ki = —(€+8k,k, +am,k, +7m,k, — (v + )k, 1, +vm,1, + vm,1,

+@+pBk,m, +(a +E)kymv —Am,m, —Zﬁ#ﬁv —um,m, —pgm,m,,
My, = —kkk, +7l,k, — € —emk, —1k,1, + 7,1, —(y — y)m,I,
+ok,m, —Al,m, +(@—B)m,m, +pk,m, —gl,m, + B — aym,m,.

'Readers unfamiliar with the spin coefficient formalism are reffered to the
original paper by E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962).

2J. Wainwright, J. Math. Phys. 12, 828 (1971); In the present paper, the
scalar ¢ associated with the neutrino field [see Egs. (2.2} and (2.4) in this
reference] is chosen so that ¢ = 1.

*For the definition of the components @, of the Ricci tensor with respect to
a null tetrad see Ref. 1, p. 570, Eq. (4.3b}.

4C. A. Kolassis, “On the effect of space-time isometries on the neutrino
field,” J. Math. Phys. 23, 1630 (1982). Here, Eq. (2.11b) follows from Eq.
(2.1) and Eq. (2.4). Then, a pure radiative 